|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910307303303321 |
|
|
Autore |
Greub Werner Hildbert <1925-> |
|
|
Titolo |
Connections, curvature, and cohomology . Volume 1 De Rham cohomology of manifolds and vector bundles [[electronic resource] /] / [by] Werner Greub, Stephen Halperin, and Ray Vanstone |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Academic Press, 1972 |
|
|
|
|
|
|
|
ISBN |
|
1-281-76355-1 |
9786611763558 |
0-08-087360-X |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (467 p.) |
|
|
|
|
|
|
Collana |
|
Pure and applied mathematics; a series of monographs and textbooks ; ; 47 |
Connections, curvature, and cohomology ; ; 1 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
HalperinStephen |
VanstoneRay |
|
|
|
|
|
|
|
|
Disciplina |
|
510.8 s514.2 |
510/.8 s 514/.2 |
514.23 |
|
|
|
|
|
|
|
|
Soggetti |
|
Connections (Mathematics) |
Homology theory |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographies and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; Connections, Curvature, and Cohomology; Copyright Page; Contents; Preface; Introduction; Contents of Volumes II and III; Chapter 0. Algebraic and Analytic Preliminaries; 1. Linear algebra; 2. Homological algebra; 3. Analysis and topology; Chapter I. Basic Concepts; 1. Topological manifolds; 2. Smooth manifolds; 3. Smooth fibre bundles; Problems; Chapter II. Vector Bundles; 1. Basic concepts; 2. Algebraic operations with vector bundles; 3. Cross-sections; 4. Vector bundles with extra structure; 5. Structure theorems; Problems; Chapter III. Tangent Bundle and Differential Forms |
1. Tangent bundle2. Local properties of smooth maps; 3. Vector fields; 4. Differential forms; 5. Orientation; Problems; Chapter IV. Calculus of Differential Forms; 1. The Opertors i,?,d; 2. Smooth families of differential forms; 3. Integration of n-forms; 4. Stokes' theorem; |
|
|
|
|