1.

Record Nr.

UNISA990003417770203316

Autore

SEILER, Hansjakob

Titolo

Universality in language beyond grammar : selected writings 1990 - 2007 / Hansjakob Seiler ; Ed. by Thomas Stolz

Pubbl/distr/stampa

Bochum : Universitätsverlag Dr. N. Brockmeyer, 2008

ISBN

978-3-8196-0697-7

Descrizione fisica

176 p. ; 23 cm

Collana

Diversitas linguarum ; 17

Disciplina

401

Soggetti

Linguaggio -- Teorie

Collocazione

IV.2. Coll. 30/ 10

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNICASRML0305850

Autore

Michaux, Henri

Titolo

Dèplacements dègagements / Henri Michaux

Pubbl/distr/stampa

Paris, : Gallimard, ©1985

Descrizione fisica

138 p. ; 22 cm.

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia

3.

Record Nr.

UNINA9910300746503321

Autore

Vieira Armando

Titolo

Introduction to Deep Learning Business Applications for Developers : From Conversational Bots in Customer Service to Medical Image Processing / / by Armando Vieira, Bernardete Ribeiro

Pubbl/distr/stampa

Berkeley, CA : , : Apress : , : Imprint : Apress, , 2018

ISBN

9781484234532

1484234537

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (XXI, 343 p. 64 illus.)

Disciplina

006

Soggetti

Artificial intelligence

Python (Computer program language)

Artificial Intelligence

Python

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

1 Introduction -- 2 Deep Learning: An Overview -- 3 Deep Neural Network Models -- 4 Image Processing -- 5 Natural Language Processing and Speech -- 6 Reinforcement Learning and Robotics -- 7 Recommendations Algorithms and Advertising -- 8 Games and Art -- 9



Other Applications -- 10 Business Impact of DL Technology -- 11 New Research and Future Directions -- Appendix Training DNN with Keras.

Sommario/riassunto

Discover the potential applications, challenges, and opportunities of deep learning from a business perspective with technical examples. These applications include image recognition, segmentation and annotation, video processing and annotation, voice recognition, intelligent personal assistants, automated translation, and autonomous vehicles. An Introduction to Deep Learning Business Applications for Developers covers some common DL algorithms such as content-based recommendation algorithms and natural language processing. You’ll explore examples, such as video prediction with fully convolutional neural networks (FCNN) and residual neural networks (ResNets). You will also see applications of DL for controlling robotics, exploring the DeepQ learning algorithm with Monte Carlo Tree search (used to beat humans in the game of Go), and modeling for financial risk assessment. There will also be mention of the powerful set of algorithms called Generative Adversarial Neural networks (GANs) that can be applied for image colorization, image completion, and style transfer. After reading this book you will have an overview of the exciting field of deep neural networks and an understanding of most of the major applications of deep learning. The book contains some coding examples, tricks, and insights on how to train deep learning models using the Keras framework. You will: Find out about deep learning and why it is so powerful Work with the major algorithms available to train deep learning models See the major breakthroughs in terms of applications of deep learning Run simple examples with a selection of deep learning libraries Discover the areas of impact of deep learning in business.