1.

Record Nr.

UNINA9910300416003321

Autore

Ukai Ryuji

Titolo

Multi-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light [[electronic resource] /] / by Ryuji Ukai

Pubbl/distr/stampa

Tokyo : , : Springer Japan : , : Imprint : Springer, , 2015

ISBN

4-431-55019-4

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (360 p.)

Collana

Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053

Disciplina

006.3722

006.3843

Soggetti

Quantum optics

Quantum computers

Spintronics

Quantum physics

Quantum Optics

Quantum Information Technology, Spintronics

Quantum Physics

Quantum Computing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction -- Quantum Optics -- Quantum States and Quantum State Manipulations -- Offline Scheme And One-Way Quantum Computation -- Cluster States And One-Way Quantum Computation -- Experimental Generation of Optical Continuous-Variable Cluster States -- Experimental Demonstration of Controlled-Z Gate for Continuous Variables -- Experimental Demonstration of Optimum Nonlocal Gate for Continuous Variables -- Experimental Demonstration of Gain-Tunable Entangling Gate for Continuous Variables -- Temporal-Mode Cluster States -- Summary.

Sommario/riassunto

In this thesis, the author develops for the first time an implementation methodology for arbitrary Gaussian operations using temporal-mode cluster states. The author also presents three experiments involving continuous-variable one-way quantum computations, where their non-



classical nature is shown by observing entanglement at the outputs. The experimental basic structure of one-way quantum computation over two-mode input state is demonstrated by the controlled-Z gate and the optimum nonlocal gate experiments. Furthermore, the author proves that the operation can be controlled by the gain-tunable entangling gate experiment.