1.

Record Nr.

UNINA990004693700403321

Autore

Germanicus, Iulius Caesar

Titolo

Les phenomenes d'Aratos / Germanicus ; texte établi et traduit par André Le Boeuffle

Pubbl/distr/stampa

Paris, : Les Belles Lettres, 1975

Titolo uniforme

Phaenomena Arati <in latino e in francese>

Descrizione fisica

LV, 82 p.(1-59 doppie)

Collana

Collection des Universités de France , Série latine

Disciplina

870.01

Locazione

FLFBC

DDR

Collocazione

P2B-640-B.L.-GERMANICUS-401A-1975

DDR-Fonti II- Germanicus Ed.1.2

Lingua di pubblicazione

Francese

Latino

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISALENTO991000649679707536

Autore

Jansen, Steen

Titolo

Tema e metafora in testi poeticio di Leopardi, Montale e Magrelli : saggi di lessicografia letteraria / Steen Jansen e Paola Polito

Pubbl/distr/stampa

Firenze : Leo S. Olschki ; 2004

ISBN

882225306X

Descrizione fisica

156 p. ; 23 cm

Collana

Strumenti di lessicografia letteraria italiana ; 23

Altri autori (Persone)

Polito, Paolaauthor

Soggetti

Leopardi, Giacomo

Montale, Eugenio

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Include indice dei nomi



3.

Record Nr.

UNINA9910300259903321

Autore

Guardo Elena

Titolo

Arithmetically Cohen-Macaulay sets of points in P^1 x P^1 / / by Elena Guardo, Adam Van Tuyl

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015

ISBN

3-319-24166-4

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (136 p.)

Collana

SpringerBriefs in Mathematics, , 2191-8198

Disciplina

516.35

Soggetti

Commutative algebra

Commutative rings

Geometry, Algebraic

Geometry, Projective

Commutative Rings and Algebras

Algebraic Geometry

Projective Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- The Biprojective Space P^1 x P^1 -- Points in P^1 x P^1 -- Classification of ACM Sets of Points in P^1 x P^1 -- Homological Invariants -- Fat Points in P^1 x P^1 -- Double Points and Their Resolution -- Applications -- References.

Sommario/riassunto

This brief presents a solution to the interpolation problem for arithmetically Cohen-Macaulay (ACM) sets of points in the multiprojective space P^1 x P^1.  It collects the various current threads in the literature on this topic with the aim of providing a self-contained, unified introduction while also advancing some new ideas.  The relevant constructions related to multiprojective spaces are reviewed first, followed by the basic properties of points in P^1 x P^1, the bigraded Hilbert function, and ACM sets of points.  The authors then show how, using a combinatorial description of ACM points in P^1 x P^1, the bigraded Hilbert function can be computed and, as a result, solve the interpolation problem.  In subsequent chapters, they consider fat points and double points in P^1 x P^1 and demonstrate how to use



their results to answer questions and problems of interest in commutative algebra.  Throughout the book, chapters end with a brief historical overview, citations of related results, and, where relevant, open questions that may inspire future research.  Graduate students and researchers working in algebraic geometry and commutative algebra will find this book to be a valuable contribution to the literature.