|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910300253103321 |
|
|
Autore |
Tuschmann Wilderich |
|
|
Titolo |
Moduli Spaces of Riemannian Metrics / / by Wilderich Tuschmann, David J. Wraith |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2015 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2015.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 123 p. 3 illus.) |
|
|
|
|
|
|
Collana |
|
Oberwolfach Seminars, , 1661-237X ; ; 46 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Geometry, Differential |
Algebraic topology |
Manifolds (Mathematics) |
Complex manifolds |
Differential Geometry |
Algebraic Topology |
Manifolds and Cell Complexes (incl. Diff.Topology) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di contenuto |
|
Part I: Positive scalar curvature -- The (moduli) space of all Riemannian metrics -- Clifford algebras and spin -- Dirac operators and index theorems -- Early results on the space of positive scalar curvature metrics -- Kreck-Stolz invariants -- Applications of Kreck-Stolz invariants -- The eta invariant and applications -- The case of dimensions 2 and 3 -- The observer moduli space and applications -- Other topological structures -- Negative scalar and Ricci curvature -- Part II: Sectional curvature -- Moduli spaces of compact manifolds with positive or non-negative sectional curvature -- Moduli spaces of compact manifolds with negative and non-positive sectional curvature -- Moduli spaces of non-compact manifolds with non-negative sectional curvature -- Positive pinching and the Klingenberg-Sakai conjecture. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though |
|
|
|
|