|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910300250803321 |
|
|
Autore |
Amadori Debora |
|
|
Titolo |
Error estimates for well-balanced schemes on simple balance laws : one-dimensional position-dependent models / / by Debora Amadori, Laurent Gosse |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2015.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (119 p.) |
|
|
|
|
|
|
Collana |
|
SpringerBriefs in Mathematics, , 2191-8198 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differential equations, Partial |
Numerical analysis |
Mathematical physics |
Physics |
Partial Differential Equations |
Numerical Analysis |
Mathematical Applications in the Physical Sciences |
Numerical and Computational Physics, Simulation |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters and index. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
1 Introduction -- 2 Local and global error estimates -- 3 Position-dependent scalar balance laws -- 4 Lyapunov functional for inertial approximations -- 5 Entropy dissipation and comparison with Lyapunov estimates -- 6 Conclusion and outlook. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-dependent relaxation system, in inertial approximation. Such estimates shed light on why those algorithms based on source terms handled like "local scatterers" can outperform other, more standard, numerical schemes. |
|
|
|
|