1.

Record Nr.

UNINA9910300157303321

Autore

Talagrand Michel

Titolo

Upper and Lower Bounds for Stochastic Processes : Modern Methods and Classical Problems / / by Michel Talagrand

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014

ISBN

3-642-54075-9

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (630 pages) : illustrations

Collana

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, , 0071-1136 ; ; 60

Classificazione

510

SK 820

Disciplina

519.2

Soggetti

Probabilities

Functional analysis

Probability Theory and Stochastic Processes

Functional Analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

0. Introduction -- 1. Philosophy and Overview of the Book -- 2. Gaussian Processes and the Generic Chaining -- 3. Random Fourier Series and Trigonometric Sums, I. - 4. Matching Theorems I -- 5. Bernouilli Processes -- 6. Trees and the Art of Lower Bounds -- 7. Random Fourier Series and Trigonometric Sums, II -- 8. Processes Related to Gaussian Processes -- 9. Theory and Practice of Empirical Processes -- 10. Partition Scheme for Families of Distances -- 11. Infinitely Divisible Processes -- 12. The Fundamental Conjectures -- 13. Convergence of Orthogonal Series; Majorizing Measures -- 14. Matching Theorems, II: Shor's Matching Theorem. 15. The Ultimate Matching Theorem in Dimension ≥ 3 -- 16. Applications to Banach Space Theory -- 17. Appendix: What this Book is Really About -- 18. Appendix: Continuity -- References. Index.

Sommario/riassunto

The book develops modern methods and in particular the "generic chaining" to bound stochastic processes. This methods allows in particular to get optimal bounds for Gaussian and Bernoulli processes. Applications are given to stable processes, infinitely divisible processes, matching theorems, the convergence of random Fourier



series, of orthogonal series, and to functional analysis. The complete solution of a number of classical problems is given in complete detail, and an ambitious program for future research is laid out.