1.

Record Nr.

UNINA990004248680403321

Autore

De Filippo, Eduardo <1900-1984>

Titolo

Teatro / Eduardo De Filippo ; a cura di Nicola De Blasi e Paola Quarenghi

Pubbl/distr/stampa

Milano : Mondadori, 2000-2007

ISBN

88-04-47410-6

88-04-53740-X

978-88-04-56243-6

Descrizione fisica

3 v. ; 18 cm

Collana

I meridiani

Disciplina

852.914

Locazione

FLFBC

Collocazione

852.914 DEFE 1(1)

852.914 DEFE 1(2)

852.914 DEFE 1(3)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

1.: Cantata dei giorni pari. - 2000 2.1: Cantata dei giorni dispari. - 2005 3: Cantata dei giorni dispari. - 2007



2.

Record Nr.

UNINA9910300155703321

Autore

Gupta Vijay

Titolo

Convergence Estimates in Approximation Theory / / by Vijay Gupta, Ravi P. Agarwal

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014

ISBN

9783319027654

3319027654

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (xiii, 361 pages)

Collana

Gale eBooks

Disciplina

510

511.4

515

515.2433

Soggetti

Approximation theory

Operator theory

Mathematical analysis

Differential equations

Approximations and Expansions

Operator Theory

Analysis

Differential Equations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1. Preliminaries -- 2. Approximation by Certain Operators -- 3. Complete Asymptotic Expansion -- 4. Linear and Iterative Combinations -- 5. Better Approximation -- 6. Complex Operators in Compact Disks -- 7. Rate of Convergence for Functions of BV -- 8. Convergence for BV/Bounded Functions on Bezier Variants -- 9. Some More Results on Rate of Convergence -- 10. Rate of Convergence in Simultaneous Approximation -- 11. Future Scope and Open Problems.

Sommario/riassunto

The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This



book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.