1.

Record Nr.

UNISA996388032103316

Autore

Whittington Robert <d. ca. 1560.>

Titolo

Pre̜terita verborum [[electronic resource] ] : Gra[m]maticæ prima pars Roberti VVhitintoni L.L. nuperrime recensita. Liber quintus, de verborũ pre̜teritis & supinis, cũ cõmento necnon interliniari dictionum interpretatione .

Pubbl/distr/stampa

Londini, : in e̜dibus VVinãdi de VVorde., xxiiij .supra sesquimillesimũ nostre̜ redemptionis anno. [1524]

Descrizione fisica

[40] p

Soggetti

Latin language - Grammar

Lingua di pubblicazione

Latino

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Imprint from colophon.

Signatures: A⁴ B⁶ C⁴ D⁶

Initials; title within ornamental border, with McK. 49 at top and McK. 50 at foot.

Reproduction of original in: Henry E. Huntington Library and Art Gallery.

Sommario/riassunto

eebo-0113



2.

Record Nr.

UNINA9910300150303321

Autore

Li Tatsien

Titolo

Mathematical model of spontaneous potential well-logging and its numerical solutions / / Tatsien Li [and four others]

Pubbl/distr/stampa

Heidelberg [Germany] : , : Springer, , 2014

ISBN

3-642-41425-7

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (vii, 67 pages) : illustrations (some color)

Collana

SpringerBriefs in Mathematics, , 2191-8198

Disciplina

515.353

Soggetti

Oil well logging - Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"ISSN: 2191-8198."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Preface -- Modeling -- Properties of solutions -- Limiting behavior -- Techniques of solution -- Numerical simulation -- Bibliography.

Sommario/riassunto

Spontaneous potential (SP) well-logging is one of the most common and useful well-logging techniques in petroleum exploitation. This monograph is the first of its kind on the mathematical model of spontaneous potential well-logging and its numerical solutions. The mathematical model established in this book shows the necessity of introducing Sobolev spaces with fractional power, which seriously increases the difficulty of proving the well-posedness and proposing numerical solution schemes. In this book, in the axi-symmetric situation the well-posedness of the corresponding mathematical model is proved and three efficient schemes of numerical solution are proposed, supported by a number of numerical examples to meet practical computation needs.