1.

Record Nr.

UNISALENTO991002792999707536

Autore

Choquet-Bruhat, Yvonne

Titolo

Recueil de problèmes de mathematiques a l'usage des physiciens / par Y. Choquet-Bruhat ; preface de A. Lichnerowicz

Pubbl/distr/stampa

Paris : Masson, 1963

Descrizione fisica

v, 318 p. ; 25 cm

Collana

Collection d'ouvrages de mathèmatiques a l'usage des physiciens

Classificazione

AMS 00A79

Disciplina

510.76

Soggetti

Mathematics - Exercises

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910300144603321

Autore

Hackbusch Wolfgang

Titolo

The Concept of Stability in Numerical Mathematics / / by Wolfgang Hackbusch

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014

ISBN

3-642-39386-1

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (202 pages) : illustrations

Collana

Springer Series in Computational Mathematics, , 2198-3712 ; ; 45

Disciplina

518

Soggetti

Numerical analysis

Differential equations

Integral equations

Numerical Analysis

Differential Equations

Integral Equations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Preface -- Introduction -- Stability of Finite Algorithms -- Quadrature -- Interpolation -- Ordinary Differential Equations -- Instationary Partial Difference Equations -- Stability for Discretisations of Elliptic Problems -- Stability for Discretisations of Integral Equations -- Index.

Sommario/riassunto

In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.  .