1.

Record Nr.

UNINA9910440860503321

Autore

Gimpel, Erich

Titolo

Operazione Elster : autobiografia di una spia tedesca in America / Erich Gimpel

Pubbl/distr/stampa

Milano, : Res Gestae, 2019

ISBN

978-88-6697-258-7

Descrizione fisica

270 p. ; 22 cm

Disciplina

327.12092

Locazione

FSPBC

Collocazione

XIV M 138

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910300143803321

Autore

Paugam Frédéric

Titolo

Towards the Mathematics of Quantum Field Theory / / by Frédéric Paugam

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014

ISBN

3-319-04564-4

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (485 pages)

Collana

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, , 0071-1136 ; ; 59

Classificazione

SK 950

UO 4000

Disciplina

530.143

Soggetti

Mathematical physics

Categories (Mathematics)

Algebra, Homological

Algebraic topology

Mathematical Physics

Category Theory, Homological Algebra

Algebraic Topology

Lingua di pubblicazione

Inglese



Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Mathematical Preliminaries -- Classical Trajectories and Fields -- Quantum Trajectories and Fields -- Appendices.

Sommario/riassunto

The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras. The book is primarily intended for pure mathematicians (and in particular graduate students) who would like to learn about the mathematics of quantum field theory.