| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910440860503321 |
|
|
Autore |
Gimpel, Erich |
|
|
Titolo |
Operazione Elster : autobiografia di una spia tedesca in America / Erich Gimpel |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano, : Res Gestae, 2019 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910300143803321 |
|
|
Autore |
Paugam Frédéric |
|
|
Titolo |
Towards the Mathematics of Quantum Field Theory / / by Frédéric Paugam |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2014.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (485 pages) |
|
|
|
|
|
|
Collana |
|
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, , 0071-1136 ; ; 59 |
|
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematical physics |
Categories (Mathematics) |
Algebra, Homological |
Algebraic topology |
Mathematical Physics |
Category Theory, Homological Algebra |
Algebraic Topology |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Mathematical Preliminaries -- Classical Trajectories and Fields -- Quantum Trajectories and Fields -- Appendices. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras. The book is primarily intended for pure mathematicians (and in particular graduate students) who would like to learn about the mathematics of quantum field theory. |
|
|
|
|
|
|
|
| |