1.

Record Nr.

UNINA9910300142903321

Autore

Weiß Christian

Titolo

Twisted Teichmüller Curves / / by Christian Weiß

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014

ISBN

3-319-04075-8

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (XVI, 166 p. 13 illus., 6 illus. in color.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 2104

Classificazione

MAT 145f

MAT 325f

SI 850

14G3520H1011R1137D40

Disciplina

516.352

Soggetti

Algebraic geometry

Number theory

Dynamics

Ergodic theory

Algebraic Geometry

Number Theory

Dynamical Systems and Ergodic Theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Expanded version of the author's thesis (doctoral)--Universität Frankfurt am Main.

Nota di bibliografia

Includes bibliographical references (pages 159-163) and index.

Nota di contenuto

Introduction -- Background -- Teichmüller Curves -- Twisted Teichmüller Curves -- Stabilizer and Maximality -- Calculations for Twisted Teichmüller Curves -- Prym Varieties and Teichmüller Curves -- Lyapunov Exponents -- Kobayashi Curves Revisited -- Appendix -- Tables -- List of Symbols -- Index -- Bibliography.

Sommario/riassunto

These notes introduce a new class of algebraic curves on Hilbert modular surfaces. These curves are called twisted Teichmüller curves, because their construction is very reminiscent of Hirzebruch-Zagier cycles. These new objects are analyzed in detail and their main properties are described. In particular, the volume of twisted Teichmüller curves is calculated and their components are partially classified. The study of algebraic curves on Hilbert modular surfaces has been widely covered in the literature due to their arithmetic



importance. Among these, twisted diagonals (Hirzebruch-Zagier cycles) are some of the most important examples.