1.

Record Nr.

UNISA990000892800203316

Autore

BONAZZI, Giuseppe

Titolo

2: La questione burocratica / Giuseppe Bonazzi

Pubbl/distr/stampa

Milano : F. Angeli, 2002

ISBN

88-464-3427-7

Descrizione fisica

144 p. ; 22 cm

Collana

Collana di sociologia ; 367

Disciplina

306.36

Soggetti

Organizzazione del lavoro - Sociologia

Produzione - Organizzazione

Collocazione

II.5. Coll.1/ 47/2(VI SOC D COLL 1/366.2)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISA990000450160203316

Autore

BRENTANO, Clemens

Titolo

Gedichte Erzählungen Briefe / Clemens Brentano ; herausgegeben von Hans Magnus Enzensberger

Pubbl/distr/stampa

Frankfurt am Main, : Insel, 1981

ISBN

3-458-32257-4

Descrizione fisica

339 p. ; 18 cm

Collana

Insel taschenbuch ; 557

Disciplina

838.7

Collocazione

VII.2. Coll.18/ 8(II t B 522)

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

3.

Record Nr.

UNINA9910300137203321

Autore

König Hermann

Titolo

Operator relations characterizing derivatives / / by Hermann König, Vitali Milman

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2018

ISBN

3-030-00241-1

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (193 pages)

Disciplina

515.724

Soggetti

Difference equations

Functional equations

Operator theory

Functions of real variables

Difference and Functional Equations

Operator Theory

Real Functions

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Nota di contenuto

Introduction -- Regular Solutions of Some Functional Equations -- The Leibniz Rule -- The Chain Rule -- Stability and Rigidity of the Leibniz and the Chain Rules -- The Chain Rule Inequality and its Perturbations -- The Second-Order Leibniz rule -- Non-localization Results -- The Second-Order Chain Rule -- Bibliography -- Subject Index -- Author Index.

Sommario/riassunto

This monograph develops an operator viewpoint for functional equations in classical function spaces of analysis, thus filling a void in the mathematical literature. Major constructions or operations in analysis are often characterized by some elementary properties, relations or equations which they satisfy. The authors present recent results on the problem to what extent the derivative is characterized by equations such as the Leibniz rule or the Chain rule operator equation in C^k-spaces. By localization, these operator equations turn into specific functional equations which the authors then solve. The second derivative, Sturm-Liouville operators and the Laplacian motivate the study of certain "second-order" operator equations. Additionally, the authors determine the general solution of these operator equations under weak assumptions of non-degeneration. In their approach, operators are not required to be linear, and the authors also try to avoid continuity conditions. The Leibniz rule, the Chain rule and its extensions turn out to be stable under perturbations and relaxations of assumptions on the form of the operators. The results yield an algebraic understanding of first- and second-order differential operators. Because the authors have chosen to characterize the derivative by algebraic relations, the rich operator-type structure behind the fundamental notion of the derivative and its relatives in analysis is discovered and explored. The book does not require any specific knowledge of functional equations. All needed results are presented and proven and the book is addressed to a general mathematical audience.