1.

Record Nr.

UNISALENTO991000282199707536

Autore

Ruzittu, Laura

Titolo

Funzione Zeta di Riemann e Numeri di Bernoulli e di Eulero. Tesi di laurea in algebra / laureanda Laura Ruzittu; relat. Chu Wenchang

Pubbl/distr/stampa

Lecce : Università del Salento. Facoltà di Scienze MM. FF. NN. Corso di laurea triennale in Matematica, a.a. 2007-08

Descrizione fisica

32 p. ; 29 cm

Classificazione

AMS 11M06

AMS 11B68

Altri autori (Persone)

Wenchang, Chu

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910300116703321

Autore

Berlyand Leonid

Titolo

Getting Acquainted with Homogenization and Multiscale / / by Leonid Berlyand, Volodymyr Rybalko

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2018

ISBN

3-030-01777-X

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (XVIII, 178 p. 42 illus., 14 illus. in color.)

Collana

Compact Textbooks in Mathematics, , 2296-4568

Disciplina

515.353

515.35

Soggetti

Computer science - Mathematics

Applied mathematics

Engineering mathematics

Differential equations, Partial

Computational Science and Engineering

Mathematical and Computational Engineering

Partial Differential Equations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa



Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Chapter 1- Preliminaries -- Chapter 2- What is Homogenization and Multiscale? First Examples -- Chapter 3- Brief History and Surprising Examples in Homogenization -- Chapter 4- Formal Two-scale Asymptotic Expansions and the Corrector Problem -- Chapter 5- Compensated Compactness and Oscillating Test-functions -- Chapter 6- Two-scale Convergence -- Chapter 7- Examples of Explicit Effective Coefficients: Laminated Structures and 2D Checkerboards -- Chapter 8- Introduction to Stochastic Homogenization -- Chapter 9- G-Convergence in Nonlinear Homogenization Problems -- Chapter 10- An Example of a Nonlinear Problem: Homogenization of Plasticity and Limit Loads -- Chapter 11- Continuum Limits for Discrete Problems with Fine Scales -- References -- Appendix: Regular and Singular Perturbations and Boundary Layers -- Index.

Sommario/riassunto

The objective of this book is to navigate beginning graduate students in mathematics and engineering through a mature field of multiscale problems in homogenization theory and to provide an idea of its broad scope. An overview of a wide spectrum of homogenization techniques ranging from classical two-scale asymptotic expansions to Gamma convergence and the rapidly developing field of stochastic homogenization is presented. The mathematical proofs and definitions are supplemented with intuitive explanations and figures to make them easier to follow. A blend of mathematics and examples from materials science and engineering is designed to teach a mixed audience of mathematical and non-mathematical students.