1.

Record Nr.

UNINA990001312200403321

Autore

Opic, B.

Titolo

Hardy-type inequalities / B. Opic, A. Kufner

Pubbl/distr/stampa

Harlow (UK) : Longman, 1990

ISBN

0-582-05198-3

Collana

Pitman research notes in mathematics series ; 219

Disciplina

515.36

Locazione

MA1

Collocazione

C-2-(219

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNISALENTO991001091239707536

Autore

Purcell, John

Titolo

The Linux bible : the GNU testament / [edited by John Purcell and Amanda Robinson]

Pubbl/distr/stampa

San Jose, Ca : Yggdrasil Computing, 1996

ISBN

1883601207

Edizione

[4th ed]

Descrizione fisica

v, 1886 p. : ill. ; 24 cm.

Classificazione

AMS 68N25

CR D.4.0

Altri autori (Persone)

Robinson, Amanda

Disciplina

005.43

Soggetti

Linux

Operating systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes bibliographical references and index



3.

Record Nr.

UNICASMOD0315725

Autore

Bayle, Pierre <1647-1706>

Titolo

1: A-AM / Pierre Bayle

Pubbl/distr/stampa

Geneve, :  Slatkine reprints, 1969

Descrizione fisica

XXX, 553 p.

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia

4.

Record Nr.

UNINA9910576871803321

Autore

Kuncová Gabriela

Titolo

Fiber Optic Sensors in Chemical and Biological Applications

Pubbl/distr/stampa

Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022

Descrizione fisica

1 online resource (126 p.)

Soggetti

Biology, life sciences

Research & information: general

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

The Special Issue "Fiber Optic Sensors in Chemical and Biological Applications" gathers recent original  papers.  The subjects of the papers cover a broad range of optical fiber chemical sensors and biosensors applied for regulation in bioreactors, to novel concepts of intrinsic optical fiber sensors.



5.

Record Nr.

UNINA9910300110003321

Autore

Hambleton Samuel A

Titolo

Cubic Fields with Geometry / / by Samuel A. Hambleton, Hugh C. Williams

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018

ISBN

3-030-01404-5

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (xix, 493 pages) : illustrations

Collana

CMS Books in Mathematics, Ouvrages de mathématiques de la SMC, , 1613-5237

Disciplina

516.35

Soggetti

Geometry, Algebraic

Number theory

Algorithms

Algebraic Geometry

Number Theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter 1- Cubic fields -- Chapter 2- Cubic ideals and lattices -- Chapter 3- Binary cubic forms -- Chapter 4- Construction of all cubic fields of a fixed fundamental discriminant (Renate Scheidler) -- Chapter 5- Cubic Pell equations -- Chapter 6- The minima of forms and units by approximation -- Chapter 7- Voronoi's theory of continued fractions -- Chapter 8- Relative minima adjacent to 1 in a reduced lattice -- Chapter 9- Parametrization of norm 1 elements of K -- Tables and References -- Author Index -- Symbol Index -- General Index.

Sommario/riassunto

The objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophantine equations that are similar in many ways to the Pell equation. With over 50 geometric diagrams, this book includes illustrations of many of these topics. The book may be thought of as a companion reference for those students of algebraic number theory who wish to find more examples, a collection of recent research results on cubic fields, an easy-to-



understand source for learning about Voronoi’s unit algorithm and several classical results which are still relevant to the field, and a book which helps bridge a gap in understanding connections between algebraic geometry and number theory. The exposition includes numerous discussions on calculating with cubic fields including simple continued fractions of cubic irrational numbers, arithmetic using integer matrices, ideal class group computations, lattices over cubic fields, construction of cubic fields with a given discriminant, the search for elements of norm 1 of a cubic field with rational parametrization, and Voronoi's algorithm for finding a system of fundamental units. Throughout, the discussions are framed in terms of a binary cubic form that may be used to describe a given cubic field. This unifies the chapters of this book despite the diversity of their number theoretic topics. .