1.

Record Nr.

UNINA990000061010403321

Autore

Sanfelice, Antonio <il giovane>

Titolo

Antonii Sanfelicii Campania notis illustrata cura et studio Antonii Sanfelicii iunioris

Pubbl/distr/stampa

Neapoli : excudebat Johannes-Franciscus Paci, 1726

Edizione

[Editio V post Amstelodamensem, cui accesserunt auctoris poemata, item Vita a Io. Baptista Urso ... descripta, Eruditorum virorum de eodem honorifica testimonia, tabula chorographica ad ipsius mentem delineata, et Index geographicus ...]

Descrizione fisica

[26], 258 p., [2] c. di tav. : ill. ; 4°

Altri autori (Persone)

Urso, Giovanni Battista d'

Sanfelice, Antonio <1515-1570>

Disciplina

914.572

Locazione

FINBC

FGBC

Collocazione

13 AR 8 A 20

XXI B 244

Lingua di pubblicazione

Latino

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Front. in rosso e nero



2.

Record Nr.

UNINA9910300109703321

Autore

McCoy Robert A

Titolo

Function spaces with uniform, fine and graph topologies / / by Robert A. McCoy, Subiman Kundu, Varun Jindal

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , [2018]

ISBN

9783319770543

3-319-77054-3

Descrizione fisica

1 online resource (121 pages)

Collana

SpringerBriefs in Mathematics, , 2191-8198

Disciplina

515.73

Soggetti

Topology

Topologia

Espais topològics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Preface -- Introduction -- 1 Preliminaries -- 2 Metrizability and Completeness Properties of Cτ (X, Y ) for τ = d, f, g -- 3 Cardinal Functions and Countability Properties -- 4 Connectedness and Path Connectedness of Cτ (X, Y ) for a Normed Linear Space Y , where τ = d, f, g. - 5 Compactness in Cτ (X, Y ) for τ = d, f, g. - 6 Spaces of Homeomorphisms -- Bibliography -- List of Symbols -- Index.

Sommario/riassunto

This book presents a comprehensive account of the theory of spaces of continuous functions under uniform, fine and graph topologies. Besides giving full details of known results, an attempt is made to give generalizations wherever possible, enriching the existing literature. The goal of this monograph is to provide an extensive study of the uniform, fine and graph topologies on the space C(X,Y) of all continuous functions from a Tychonoff space X to a metric space (Y,d); and the uniform and fine topologies on the space H(X) of all self-homeomorphisms on a metric space (X,d). The subject matter of this monograph is significant from the theoretical viewpoint, but also has applications in areas such as analysis, approximation theory and differential topology. Written in an accessible style, this book will be of interest to researchers as well as graduate students in this vibrant research area.