1.

Record Nr.

UNINA990009934370403321

Autore

Fondi, Mario <1923-2012>

Titolo

Cava dei Tirreni [Risorsa grafica] : [capanne o "pagliare"] / fot. M. Fondi

Pubbl/distr/stampa

S. l. : s. n., 1964

Descrizione fisica

1 fotografia : b/n ; 90 x 64 mm

Locazione

ILFGE

Collocazione

Scat. Fondi 03 Busta 01(009)

Scat. Fondi 03 Busta 01(009)bis

Scat. Fondi 03 Busta 01(009)ter

Lingua di pubblicazione

Italiano

Formato

Grafica

Livello bibliografico

Monografia

Note generali

Montata su foglio manoscritto per menabò della pubblicazione: La casa rurale nella Campania, Firenze, 1964



2.

Record Nr.

UNINA9910299995303321

Autore

Awrejcewicz Jan

Titolo

Ordinary Differential Equations and Mechanical Systems / / by Jan Awrejcewicz

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014

ISBN

3-319-07659-0

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (621 p.)

Disciplina

003.3

510

515.352

515.39

Soggetti

Differential equations

Mechanics

Mathematical models

Dynamical systems

Differential Equations

Classical Mechanics

Mathematical Modeling and Industrial Mathematics

Dynamical Systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

1. Introduction -- 2. First order ODEs -- 3. Second order ODEs -- 4. Linear ODEs -- 5. Higher-order ODEs polynomial form -- 6. Systems -- 7. Theory and criteria of similarity -- 8. Model and modeling -- 9. Phase plane and phase space -- 10. Stability -- 11. Modeling via perturbation methods -- 12. Continualization and discretization -- 13. Bifurcations -- 14. Optimization of systems -- 15. Chaos and synchronization.

Sommario/riassunto

This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear



and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization, and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples, and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.