1.

Record Nr.

UNINA990003571560403321

Autore

Dhondt, Jan

Titolo

L'alto medioevo / di Jan Dhondt

Pubbl/distr/stampa

Milano : Feltrinelli, 1976

Edizione

[2. ed]

Descrizione fisica

463 p. : ill. ; 20 cm

Collana

Storia universale Feltrinelli ; 10

Disciplina

909

Locazione

DECSE

Collocazione

SE 029.06.10-

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910299989803321

Autore

Koepf Wolfram

Titolo

Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities / / by Wolfram Koepf

Pubbl/distr/stampa

London : , : Springer London : , : Imprint : Springer, , 2014

ISBN

1-4471-6464-4

Edizione

[2nd ed. 2014.]

Descrizione fisica

1 online resource (290 p.)

Collana

Universitext, , 0172-5939

Disciplina

515.55

Soggetti

Algorithms

Computer software

Functions, Special

Differential equations

Combinatorial analysis

Mathematical Software

Special Functions

Ordinary Differential Equations

Combinatorics

Lingua di pubblicazione

Inglese



Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

Introduction -- The Gamma Function -- Hypergeometric Identities -- Hypergeometric Database -- Holonomic Recurrence Equations -- Gosper’s Algorithm -- The Wilf-Zeilberger Method -- Zeilberger’s Algorithm -- Extensions of the Algorithms -- Petkovˇsek’s and Van Hoeij’s Algorithm -- Differential Equations for Sums -- Hyperexponential Antiderivatives -- Holonomic Equations for Integrals -- Rodrigues Formulas and Generating Functions.

Sommario/riassunto

Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple™. The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovšek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike.