1.

Record Nr.

UNINA9910299989203321

Autore

Murty M. Ram

Titolo

Transcendental Numbers / / by M. Ram Murty, Purusottam Rath

Pubbl/distr/stampa

New York, NY : , : Springer New York : , : Imprint : Springer, , 2014

ISBN

1-4939-0832-4

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (219 p.)

Disciplina

512.73

Soggetti

Number theory

Algebra

Mathematical analysis

Number Theory

Analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (pages [205]-213) and index.

Nota di contenuto

1. Liouville’s theorem -- 2. Hermite’s Theorem -- 3. Lindemann’s theorem -- 4. The Lindemann-Weierstrass theorem -- 5. The maximum modulus principle -- 6. Siegel’s lemma -- 7. The six exponentials theorem -- 8. Estimates for derivatives -- 9. The Schneider-Lang theorem -- 10. Elliptic functions -- 11. Transcendental values of elliptic functions -- 12. Periods and quasiperiods -- 13. Transcendental values of some elliptic integrals -- 14. The modular invariant -- 15. Transcendental values of the j-function -- 16. More elliptic integrals -- 17. Transcendental values of Eisenstein series -- 18. Elliptic integrals and hypergeometric series -- 19. Baker’s theorem -- 20. Some applications of Baker’s theorem -- 21. Schanuel’s conjecture -- 22. Transcendental values of some Dirichlet series -- 23. Proof of the Baker-Birch-Wirsing theorem -- 24. Transcendence of some infinite series -- 25. Linear independence of values of Dirichlet L-functions -- 26. Transcendence of values of modular forms -- 27. Transcendence of values of class group L-functions -- 28. Periods, multiple zeta functions and (3).      .

Sommario/riassunto

This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including



descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.