| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996208707603316 |
|
|
Titolo |
International journal of surface mining, reclamation and environment |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Rotterdam, Netherlands : , : A.A. Balkema, , [1994-2005] |
|
©1994-©2005 |
|
[Lisse, the Netherlands] : , : Swets & Zeitlinger |
|
[London] : , : Taylor & Francis |
|
|
|
|
|
|
|
|
|
ISSN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Strip mining |
Strip mining - Environmental aspects |
Mines - Exploitation à ciel ouvert |
Mines - Exploitation à ciel ouvert - Aspect de l'environnement |
Améliorations foncières - Aspect de l'environnement |
Periodicals. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Periodico |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910299981003321 |
|
|
Autore |
Waldmann Stefan |
|
|
Titolo |
Topology : An Introduction / / by Stefan Waldmann |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2014.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 136 p. 17 illus., 13 illus. in color.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Topological Spaces and Continuity -- Construction of Topological Spaces -- Convergence in Topological Spaces -- Compactness -- Continuous Functions -- Baire’s Theorem. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides a concise introduction to topology and is necessary for courses in differential geometry, functional analysis, algebraic topology, etc. Topology is a fundamental tool in most branches of pure mathematics and is also omnipresent in more applied parts of mathematics. Therefore students will need fundamental topological notions already at an early stage in their bachelor programs. While there are already many excellent monographs on general topology, most of them are too large for a first bachelor course. Topology fills this gap and can be either used for self-study or as the basis of a topology course. |
|
|
|
|
|
|
|
| |