| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNIBAS000011831 |
|
|
Autore |
Adkins, William A. |
|
|
Titolo |
Algebra : an approach via module theory / William A. Adkins, Steven H. Weintraub |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York [etc.] : Springer, c1992 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
X, 526 p. : ill. ; 25 cm. |
|
|
|
|
|
|
Collana |
|
Graduate texts in mathematics ; 136 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910299979903321 |
|
|
Autore |
Gil' Michael I |
|
|
Titolo |
Stability of Neutral Functional Differential Equations / / by Michael I. Gil' |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Paris : , : Atlantis Press : , : Imprint : Atlantis Press, , 2014 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2014.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (311 p.) |
|
|
|
|
|
|
Collana |
|
Atlantis Studies in Differential Equations, , 2214-6261 ; ; 3 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Difference equations |
Functional equations |
System theory |
Control theory |
Algebras, Linear |
Difference and Functional Equations |
Systems Theory, Control |
Linear Algebra |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preliminaries -- Eigenvalues and Functions of Matrices -- Difference Equations with Continuous Time -- Linear Differential Delay Equations -- Linear Autonomous NDEs -- Linear Time-variant NDEs -- Nonlinear Vector NDEs -- Absolute Stability of Scalar NDEs -- Bounds for Characteristic Values of NDEs. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
In this monograph the author presents explicit conditions for the exponential, absolute and input-to-state stabilities -- including solution estimates -- of certain types of functional differential equations. The main methodology used is based on a combination of recent norm estimates for matrix-valued functions, comprising the generalized Bohl-Perron principle, together with its integral version and the positivity of fundamental solutions. A significant part of the book is especially devoted to the solution of the generalized Aizerman |
|
|
|
|
| |