1.

Record Nr.

UNINA9910299977403321

Autore

Helms Lester L

Titolo

Potential Theory / / by Lester L. Helms

Pubbl/distr/stampa

London : , : Springer London : , : Imprint : Springer, , 2014

ISBN

1-4471-6422-9

Edizione

[2nd ed. 2014.]

Descrizione fisica

1 online resource (494 p.)

Collana

Universitext, , 0172-5939

Disciplina

515.7

Soggetti

Differential equations, Partial

Potential theory (Mathematics)

Probabilities

Partial Differential Equations

Potential Theory

Probability Theory and Stochastic Processes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

Preliminaries -- Laplace’s Equation -- The Dirichlet Problem -- Green Functions -- Negligible Sets -- Dirichlet Problem for Unbounded Regions -- Energy -- Interpolation and Monotonicity -- Newtonian Potential -- Elliptic Operators -- Apriori Bounds -- Oblique Derivative Problem -- Application to Diffusion Processes.

Sommario/riassunto

Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using



diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics, and engineering.