1.

Record Nr.

UNISALENTO991001591769707536

Autore

Grigoryan, Alexander

Titolo

Heat kernel and analysis on manifolds / Alexander Grigor'yan

Pubbl/distr/stampa

Providence, R. I. : American Mathematical Society

[Somerville, Mass.] : International Press, c2009

ISBN

9780821849354

0821849352

Descrizione fisica

xvii, 482 p. : ill. ; 27 cm

Collana

AMS/IP studies in advanced mathematics, 1089-3288 ; 47

Classificazione

AMS 58J35

AMS 31B05

AMS 35K05

AMS 35P15

AMS 47D07

AMS 53C20

LC QA377.G754

Disciplina

515.353

Soggetti

Heat equation

Kernel functions

Riemannian manifolds

Gaussian processes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index



2.

Record Nr.

UNINA9910299900703321

Autore

Melin Patricia

Titolo

New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension / / by Patricia Melin, German Prado-Arechiga

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018

ISBN

3-319-61149-6

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (88 pages) : illustrations, tables

Collana

SpringerBriefs in Computational Intelligence, , 2625-3712

Disciplina

616.132075

Soggetti

Computational intelligence

Biomedical engineering

Medical informatics

Computational Intelligence

Biomedical Engineering and Bioengineering

Health Informatics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

From the Content: Introduction -- Fuzzy Logic for Arterial Hypertension Classification -- Design of a Neuro Design of a Neuro Design of Arterial Hypertension.

Sommario/riassunto

In this book, a new approach for diagnosis and risk evaluation of ar-terial hypertension is introduced. The new approach was implement-ed as a hybrid intelligent system combining modular neural net-works and fuzzy systems. The different responses of the hybrid system are combined using fuzzy logic. Finally, two genetic algo-rithms are used to perform the optimization of the modular neural networks parameters and fuzzy inference system parameters. The experimental results obtained using the proposed method on real pa-tient data show that when the optimization is used, the results can be better than without optimization. This book is intended to be a refer-ence for scientists and physicians interested in applying soft compu-ting techniques, such as neural networks, fuzzy logic and genetic algorithms, in medical diagnosis, but also in general to classification



and pattern recognition and similar problems.