1.

Record Nr.

UNIBAS000006451

Autore

Gray, Ezio M.

Titolo

L' epopea belga / Ezio M. Gray

Pubbl/distr/stampa

Firenze : Bemporad, 1918

Edizione

[5. ed.]

Descrizione fisica

208 p., [1] c. di tav.,[1] cart. geogr. ripieg. : ill. ; 25 cm.

Collana

I libri d'oggi

Disciplina

940.4144

Soggetti

Belgio Storia Occupazione tedesca 1914-1918

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910299896803321

Autore

Tay Andy Kah Ping

Titolo

Acute and Chronic Neural Stimulation via Mechano-Sensitive Ion Channels / / by Andy Kah Ping Tay

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018

ISBN

3-319-69059-0

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (XVII, 119 p. 33 illus., 32 illus. in color.)

Collana

Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053

Disciplina

616.804645

Soggetti

Biomedical engineering

Nanotechnology

Nanoscience

Nanostructures

Biomedical Engineering and Bioengineering

Nanoscale Science and Technology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di bibliografia

Includes bibliographical references at the end of each chapters.

Nota di contenuto

Micro- and Nano-Technologies to Probe Brain Mechanobiology -- Acute Neural Stimulation -- Chronic Neural Stimulation -- Phenotypic Selection of Magnetospirillum magneticum (AMB-1) Over-Producers using Magnetic Ratcheting -- Magnetic Microfluidic Separation for Estimating the Magnetic Contents of Magnetotactic Bacteria -- Outlook for Magnetic Neural Stimulation Techniques. .

Sommario/riassunto

This book describes the tools, developed by the author, for perturbing endogenous mechano-sensitive ion channels for magneto-mechanical neuro-modulation. He explores the ways in which these tools compare against existing ones such as electricity, chemicals, optogenetics, and techniques like thermos/magneto-genetics. The author also reports on two platforms—magnetic ratcheting and magnetic microfluidics for directed evolution and high throughput culture of magnetotactic bacteria—that produce high quality magnetic nanoparticles for biomedical applications like neural stimulations. This thesis was submitted to and approved by the University of California, Los Angeles. Introduces technology for non-invasive control of neural activities that offer deep tissue penetration and controllable dosage; Examines the effects of biomechanical forces on cellular functions; Explores how to improve the reproducibility and uptake of magnetic tools for non-invasive neural modulation.