| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910299876503321 |
|
|
Autore |
Rotondo Damiano |
|
|
Titolo |
Advances in Gain-Scheduling and Fault Tolerant Control Techniques / / by Damiano Rotondo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2018.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XXIII, 255 p. 63 illus., 34 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Automatic control |
Computational intelligence |
Robotics |
Automation |
System theory |
Control and Systems Theory |
Computational Intelligence |
Robotics and Automation |
Systems Theory, Control |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Doctoral thesis accepted by Universitat Politècnica de Catalunya, Barcelona, Spain." |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction.- Part -- Advances in gain-scheduling techniques -- Background on gain-scheduling.- Automated generation and comparison of Takagi-Sugeno and polytopic quasi-LPV models -- Robust state-feedback control of uncertain LPV systems.- Shifting state-feedback control of LPV systems -- part 2 -- Background on fault tolerant control.- Fault tolerant control of LPV systems using robust state-feedback control.- Fault tolerant control of LPV systems using reconfigured reference model and virtual actuators -- Fault tolerant control of unstable LPV systems subject to actuator saturations and fault isolation delay -- Conclusions and future work. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This thesis reports on novel methods for gain-scheduling and fault tolerant control (FTC). It begins by analyzing the connection between |
|
|
|
|
|
|
|
|
|
|
the linear parameter varying (LPV) and Takagi-Sugeno (TS) paradigms. This is then followed by a detailed description of the design of robust and shifting state-feedback controllers for these systems. Furthermore, it presents two approaches to fault-tolerant control: the first is based on a robust polytopic controller design, while the second involves a reconfiguration of the reference model and the addition of virtual actuators into the loop. In short, the thesis offers a thorough review of the state-of-the art in gain scheduling and fault-tolerant control, with a special emphasis on LPV and TS systems. |
|
|
|
|
|
| |