|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910299781803321 |
|
|
Autore |
Chekroun Mickaël D. |
|
|
Titolo |
Stochastic parameterizing manifolds and non-Markovian reduced equations : Stochastic manifolds for nonlinear SPDEs II / / by Mickaël D. Chekroun, Honghu Liu, Shouhong Wang |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2015.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (141 p.) |
|
|
|
|
|
|
Collana |
|
SpringerBriefs in Mathematics, , 2191-8198 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differential equations, Partial |
Dynamics |
Ergodic theory |
Probabilities |
Differential equations |
Partial Differential Equations |
Dynamical Systems and Ergodic Theory |
Probability Theory and Stochastic Processes |
Ordinary Differential Equations |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
General Introduction -- Preliminaries -- Invariant Manifolds -- Pullback Characterization of Approximating, and Parameterizing Manifolds -- Non-Markovian Stochastic Reduced Equations -- On-Markovian Stochastic Reduced Equations on the Fly -- Proof of Lemma 5.1.-References -- Index. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give |
|
|
|
|