1.

Record Nr.

UNISALENTO991000426669707536

Autore

Ciconte, Enzo

Titolo

Storia criminale : la resistibile ascesa di mafia, 'ndrangheta e camorra dall'Ottocento ai giorni nostri / Enzo Ciconte

Pubbl/distr/stampa

Soveria Mannelli : Rubbettino, [2008]

ISBN

9788849820317

Descrizione fisica

432 p. ; 22 cm

Collana

Universale Rubbettino ; 2

Disciplina

364.1060945

Soggetti

Mafia

Camorra

Lingua di pubblicazione

Non definito

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910299253703321

Autore

Konstantinou Nikolaos

Titolo

Materializing the Web of Linked Data / / by Nikolaos Konstantinou, Dimitrios-Emmanuel Spanos

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015

ISBN

3-319-16074-5

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (146 p.)

Disciplina

004

005.7

006.312

025.04

Soggetti

Data mining

Information organization

Application software

Data Mining and Knowledge Discovery

Information Storage and Retrieval

Information Systems Applications (incl. Internet)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters.

Nota di contenuto

Introduction: Linked Data and the Semantic Web -- Technical Background -- Deploying Linked Open Data: Methodologies and Software Tools -- Creating Linked Data from Relational Databases -- Generating Linked Data in Real-Time from Sensor Data Streams -- Conclusions.

Sommario/riassunto

This book explains the Linked Data domain by adopting a bottom-up approach: it introduces the fundamental Semantic Web technologies and building blocks, which are then combined into methodologies and end-to-end examples for publishing datasets as Linked Data, and use cases that harness scholarly information and sensor data. It presents how Linked Data is used for web-scale data integration, information management and search. Special emphasis is given to the publication of Linked Data from relational databases as well as from real-time sensor data streams. The authors also trace the transformation from



the document-based World Wide Web into a Web of Data. Materializing the Web of Linked Data is addressed to researchers and professionals studying software technologies, tools and approaches that drive the Linked Data ecosystem, and the Web in general.

3.

Record Nr.

UNINA9910299777503321

Autore

Chapman Chris

Titolo

R for Marketing Research and Analytics / / by Chris Chapman, Elea McDonnell Feit

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015

ISBN

3-319-14436-7

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (459 p.)

Collana

Use R!, , 2197-5736

Disciplina

519.502855133

Soggetti

Statistics

Marketing

R (Computer program language)

Statistics for Business, Management, Economics, Finance, Insurance

Statistics and Computing/Statistics Programs

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

includes bibliographical references and index.

Nota di contenuto

Welcome to R -- The R Language -- Describing Data -- Relationships Between Continuous Variables -- Comparing Groups: Tables and Visualizations -- Comparing Groups: Statistical Tests -- Identifying Drivers of Outcomes: Linear Models -- Reducing Data Complexity -- Additional Linear Modeling Topics -- Confirmatory Factor Analysis and Structural Equation Modeling -- Segmentation: Clustering and Classification -- Association Rules for Market Basket Analysis -- Choice Modeling -- Conclusion -- Appendix: R Versions and Related Software -- Appendix: Scaling up -- Appendix: Packages Used -- Index.

Sommario/riassunto

This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics,



presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.