1.

Record Nr.

UNINA990004740390403321

Autore

Gravell

Titolo

Die Charakteristik der Personen im Rolandsliede : Ein Beitrag zur Kenntniss seiner poetischen Technik / von Graevell

Pubbl/distr/stampa

Heilbronn : Henninger, 1880

Descrizione fisica

162 p. ; 25 cm

Locazione

FLFBC

Collocazione

2/VIII C 12

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910299491003321

Autore

Kramer Oliver

Titolo

A brief introduction to continuous evolutionary optimization / / Oliver Kramer

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , 2014

ISBN

3-319-03422-7

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (xi, 94 pages) : illustrations (some color)

Collana

SpringerBriefs in Computational Intelligence, , 2625-3704

Disciplina

006.3

Soggetti

Evolutionary computation

Computational intelligence

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"ISSN: 2191-530X."

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Part I Foundations -- Part II Advanced Optimization -- Part III Learning -- Part IV Appendix.

Sommario/riassunto

Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work



introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator, and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods.