1.

Record Nr.

UNISA990002755390203316

Autore

MILLER, Rebecca Lynne

Titolo

The terracotta votives from Medma : cult and Coroplastic craft in Magna Grecia / Rebecca Lynne Miller

Pubbl/distr/stampa

Ann Arbor : Univeristy Microfilms International, 1983

Descrizione fisica

X, 438 p. : ill. ; 21 cm

Disciplina

738.8209377

Soggetti

Terracotte votive - Medma

Collocazione

I D MIL 1

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

2 v. in 1

2.

Record Nr.

UNINA9910299269203321

Autore

Nunes Eric

Titolo

Artificial Intelligence Tools for Cyber Attribution / / by Eric Nunes, Paulo Shakarian, Gerardo I. Simari, Andrew Ruef

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018

ISBN

3-319-73788-0

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (97 pages) : illustrations

Collana

SpringerBriefs in Computer Science, , 2191-5768

Disciplina

006.3

Soggetti

Artificial intelligence

Data protection

Artificial Intelligence

Security

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references at the end of each chapters.



Sommario/riassunto

This SpringerBrief discusses how to develop intelligent systems for cyber attribution regarding cyber-attacks. Specifically, the authors review the multiple facets of the cyber attribution problem that make it difficult for “out-of-the-box” artificial intelligence and machine learning techniques to handle.  Attributing a cyber-operation through the use of multiple pieces of technical evidence (i.e., malware reverse-engineering and source tracking) and conventional intelligence sources (i.e., human or signals intelligence) is a difficult problem not only due to the effort required to obtain evidence, but the ease with which an adversary can plant false evidence. This SpringerBrief not only lays out the theoretical foundations for how to handle the unique aspects of cyber attribution – and how to update models used for this purpose – but it also describes a series of empirical results, as well as compares results of specially-designed frameworks for cyber attribution to standard machine learning approaches.  Cyber attribution is not only a challenging problem, but there are also problems in performing such research, particularly in obtaining relevant data. This SpringerBrief describes how to use capture-the-flag for such research, and describes issues from organizing such data to running your own capture-the-flag specifically designed for cyber attribution. Datasets and software are also available on the companion website.