| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991000689369707536 |
|
|
Autore |
Lipschutz, Seymour |
|
|
Titolo |
Programmare in Fortran / S. Lipschutz, A. Poe |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano : Etas Libri, 1980 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Collana Schaum. Teoria e problemi |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Fortram <linguaggio di programmazione> |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910298971103321 |
|
|
Autore |
Budaghyan Lilya |
|
|
Titolo |
Construction and analysis of cryptographic functions / / by Lilya Budaghyan |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2014.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (172 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Coding theory |
Information theory |
Data encryption (Computer science) |
Difference equations |
Functional equations |
Combinatorial analysis |
Coding and Information Theory |
Cryptology |
Difference and Functional Equations |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Generalities -- Equivalence relations of functions -- Bent functions -- New classes of APN and AB polynomials -- Construction of planar functions. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book covers novel research on construction and analysis of optimal cryptographic functions such as almost perfect nonlinear (APN), almost bent (AB), planar and bent functions. These functions have optimal resistance to linear and/or differential attacks, which are the two most powerful attacks on symmetric cryptosystems. Besides cryptographic applications, these functions are significant in many branches of mathematics and information theory including coding theory, combinatorics, commutative algebra, finite geometry, sequence design and quantum information theory. The author analyzes equivalence relations for these functions and develops several new methods for construction of their infinite families. In addition, the book offers solutions to two longstanding open problems, including the problem on characterization of APN and AB functions via Boolean, and the problem on the relation between two classes of bent functions. |
|
|
|
|
|
|
|
| |