1.

Record Nr.

UNINA9910298425203321

Titolo

Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective / / edited by Sajad Majeed Zargar, Mohammad Yousuf Zargar

Pubbl/distr/stampa

Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018

ISBN

981-10-7479-8

Edizione

[1st ed. 2018.]

Descrizione fisica

1 online resource (350 pages) : illustrations, tables

Disciplina

571.742

Soggetti

Plant physiology

Plant anatomy

Plant development

Plant genetics

Plant breeding

Plant Physiology

Plant Anatomy/Development

Plant Genetics and Genomics

Plant Breeding/Biotechnology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references at the end of each chapters.

Nota di contenuto

Chapter 1. “Omics”: A Gateway Towards Abiotic Stress Tolerance -- Chapter 2. Second Messengers: Central Regulators in Plant Abiotic Stress Response -- Chapter 3. Signaling Peptides: Hidden Molecular Messengers of Abiotic Stress Perception and Response in Plants -- Chapter 4. Reactive Oxygen Species (ROS) – A Way to Stress Survival in Plants -- Chapter 5. Role of Cuticular Wax in Adaptation to Abiotic Stress - A Molecular Perspective -- Chapter 6. Abiotic Stress Response in Plants: A Cis-Regulatory Perspective -- Chapter 7. Multifarious Role of ROS in Halophytes: Signaling and Defense -- Chapter 8. Enhancing Cold Tolerance in Horticultural Plants Using In Vitro Approaches -- Chapter 9. Omics Based Strategies for Improving Salt Tolerance in Maize (Zea mays L.) -- Chapter 10. Drought Stress Tolerance in Wheat: Omics Approaches in Understanding and Enhancing Antioxidant Defense -- Chapter 11. Signalling During Cold Stress And its Interplay



with Transcriptional Regulation -- Chapter 12. Cross-Talk Between Phytohormone Signaling Pathways under Abiotic Stress Conditions and Their Metabolic Engineering for Conferring Abiotic Stress Tolerance.

Sommario/riassunto

The natural environment for plants is composed of a complex set of abiotic and biotic stresses; plant responses to these stresses are equally complex. Systems biology allows us to identify regulatory hubs in complex networks. It also examines the molecular “parts” (transcripts, proteins and metabolites) of an organism and attempts to combine them into functional networks or models that effectively describe and predict the dynamic activities of that organism in different environments.  This book focuses on research advances regarding plant responses to abiotic stresses, from the physiological level to the molecular level. It highlights new insights gained from the integration of omics datasets and identifies remaining gaps in our knowledge, outlining additional focus areas for future crop improvement research.  Plants have evolved a wide range of mechanisms for coping with various abiotic stresses. In many crop plants, the molecular mechanisms involved in a single  type of stress tolerance have since been identified; however, in order to arrive at a holistic understanding of major and common events concerning abiotic stresses, the signaling pathways involved must also be elucidated. To date several molecules, like transcription factors and kinases, have been identified as promising candidates that are involved in crosstalk between stress signalling pathways. However, there is a need to better understand the tolerance mechanisms for different abiotic stresses by thoroughly grasping the signalling and sensing mechanisms involved.  Accordingly, this book covers a range of topics, including the impacts of different abiotic stresses on plants, the molecular mechanisms leading to tolerance for different abiotic stresses, signaling cascades revealing cross-talk among various abiotic stresses, and elucidation of major candidate molecules that may provide abiotic stress tolerance in plants.