1.

Record Nr.

UNINA9910292955703321

Autore

Aquarone, Alberto

Titolo

Grandi città e aree metropolitane in Italia : problemi amministrativi e prospettive di riforma / Alberto Aquarone

Pubbl/distr/stampa

Bologna : Zanichelli, 1961

Descrizione fisica

319 p., [ 8] c. di tav. ripieg. : ill. ; 25 cm

Collana

Corso di specializzazione in scienze amministrative / Università di Bologna

Disciplina

301.36

Locazione

DINTR

Collocazione

R1/22

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In testa al front.: Università di Bologna, Scuola di perfezionamento in Scienze amministrative.



2.

Record Nr.

UNINA9910450722803321

Autore

Ungar Abraham A

Titolo

Analytic hyperbolic geometry [[electronic resource] ] : mathematical foundations and applications / / Abraham A. Ungar

Pubbl/distr/stampa

New Jersey, : World Scientific, c2005

ISBN

1-281-89922-4

9786611899226

981-270-327-6

Descrizione fisica

1 online resource (482 p.)

Disciplina

516.9

Soggetti

Geometry, Hyperbolic

Vector algebra

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 445-456) and index.

Nota di contenuto

Preface; Acknowledgements; Contents; 1. Introduction; 2. Gyrogroups; 3. Gyrocommutative Gyrogroups; 4. Gyrogroup Extension; 5. Gyrovectors and Cogyrovectors; 6. Gyrovector Spaces; 7. Rudiments of Differential Geometry; 8. Gyrotrigonometry; 9. Bloch Gyrovector of Quantum Computation; 10. Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Notation And Special Symbols; Bibliography; Index

Sommario/riassunto

This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. Gyrovectors are equivalence classes of directed gyrosegments that add according to the gyroparallelogram law just as vectors are equivalence classes of directed segme