| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910286408203321 |
|
|
Autore |
Bancquart Marie-Claire |
|
|
Titolo |
Flaubert, Le Poittevin, Maupassant : Une affaire de famille littéraire / / Yvan Leclerc |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Mont-Saint-Aignan, : Presses universitaires de Rouen et du Havre, 2018 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (272 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
BemJeanne |
BienvenuJacques |
BotterelCatherine |
DesportesMatthieu |
EmptazFlorence |
ForestierLouis |
JohnstonMario |
KempfRoger |
LacosteFrancis |
LeclercYvan |
MarcoinFrancis |
PastorMartine |
PoyetThierry |
VincentEmmanuel |
WetherillPeter Michael |
|
|
|
|
|
|
|
|
Soggetti |
|
Literature (General) |
roman |
Normandie |
écrivain |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
La relation entre Flaubert et Maupassant passe par un troisième homme, un poète méconnu mort jeune, Alfred Le Poittevin, ami capital |
|
|
|
|
|
|
|
|
|
|
de Gustave et oncle de Guy. L'affaire de famille qui réunit les membres de ce trio relève donc à la fois des liens du sang et des relations symboliques, puisque le rapport maître-disciple des deux écrivains normands se double d'une reconnaissance en paternité spirituelle. Ce volume regroupe les communications présentées au colloque du cent cinquantenaire de la naissance de Guy de Maupassant, organisé à Fécamp les 27 et 28 octobre 2000, par la Ville de Fécamp et par l'Université de Rouen. Fécamp offrait l'unité de lieu idéale pour évoquer les affinités entre les trois hommes, puisqu'ils ont bien connu la maison de la famille Thurin-Le Poittevin (les parents d'Alfred et de Laure, mère de Guy), demeure actuellement située au 98, quai de Maupassant. Nos journées du cent cinquantenaire de la naissance se situent dans la continuité du grand colloque organisé à Fécamp pour le centenaire de la mort, en 1993 ; il revenait à Louis Forestier, qui le présidait alors, d'apporter au présent volume la synthèse finale. Dans les annexes, on trouvera en fac-similé et en transcription un long poème d'Alfred Le Poittevin recopié par Flaubert, connu sous le nom de « La Chasse du comte Ulric ». Il appartient aux collections de la Bibliothèque municipale de Fécamp. Nous reproduisons également plusieurs pages peu connues de la revue La Plage Normande illustrée, datées de 1887, qui mentionnent les faits et gestes d'un illustre « baigneur » nommé Maupassant. |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910890181003321 |
|
|
Autore |
Gogoi Ankur |
|
|
Titolo |
Biomedical Imaging : Advances in Artificial Intelligence and Machine Learning / / edited by Ankur Gogoi, Nirmal Mazumder |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2024.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (359 pages) |
|
|
|
|
|
|
Collana |
|
Biological and Medical Physics, Biomedical Engineering, , 2197-5647 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Biophysics |
Biomedical engineering |
Optical spectroscopy |
Cancer - Imaging |
Bioanalysis and Bioimaging |
Biomedical Engineering and Bioengineering |
Optical Spectroscopy |
Cancer Imaging |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Artificial intelligence (AI) in diagnostic medical image processing: Recent advances and challenges -- Introduction to machine learning -- Artificial intelligence in Raman spectroscopy and microscopy -- Machine learning based analysis in Biomedical applications -- Applications of support vector machine in polarization sensitive fluorescence spectroscopy in biophotonics research -- Tissue optical clearing and machine learning based analysis -- Machine learning based photoacoustic image analysis for cancer diagnosis -- Diffuse optical imaging and spectroscopy as a non-invasive diagnostic tool -- Machine learning in nonlinear optical microscopy -- Deep learning in quantitative phase imaging -- Deep learning in super resolution microcopy -- Machine learning based analysis in Stokes Mueller Polarization light applications -- Polarization resolved second harmonic generation for tissue imaging -- Light microscopy in endoscopy -- Deep learning-based algorithm applied to multiphoton microscopy -- Cross polarization optical coherence tomography applications in brain |
|
|
|
|
|
|
|
|
|
|
|
research -- Machine learning applications in brain research -- Recent trends in survival prediction of malignant brain tumour patients. |
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents the rapidly developing field of artificial intelligence and machine learning and its application in biomedical imaging. As is known, starting from the diagnosis of fractures by using X-rays to understanding the complex structure and function of the brain, biomedical imaging has contributed immensely toward the development of precision diagnosis and treatment strategies for numerous diseases. While continuous evolution in imaging technologies have enabled the acquisition of images having resolution and contrast far better than ever, it significantly increased the volume of data associated with each image scan—making it increasingly difficult for experts to analyze and interpret. In this context, the application of artificial intelligence (AI) and machine learning (ML) tools has become one of the most exciting frontlines of contemporary research in biomedical imaging due to their capability to extract minute traces of various disease signatures from large and complicated datasets and providing clear insight into the potential abnormalities with excellent accuracy, sensitivity, and specificity. The hallmark of this book will be the contributions from international leaders on different AI-aided advanced biomedical imaging modalities and techniques. Included will be comprehensive description of several of the technology-driven spectacular advances made over the past few years that have allowed early detection and delineation of abnormalities with sub-pixel image segmentation and classification. Starting from the fundamentals of biomedical image processing, the book presents a streamlined and focused coverage of the core principles, theoretical and experimental approaches, and state-of-the-art applications of most of the currently used biomedical imaging techniques powered by AI. |
|
|
|
|
|
|
|
| |