1.

Record Nr.

UNINA9910268637103321

Autore

Fedele, Valentina

Titolo

Islam e mascolinità : la definizione delle soggettività di genere nella diaspora musulmana nel Mediterraneo / Valentina Fedele

Pubbl/distr/stampa

Milano ; Udine : Mimesis, 2015

ISBN

978-88-575-2978-3

Descrizione fisica

117 p. ; 21 cm

Collana

Mimesis. Minima sociologie ; 15

Disciplina

305.310917671

Locazione

FSPBC

Collocazione

COLLEZ. 2499 (15)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISALENTO991004034329707536

Autore

McMacAuley, James Phillip

Titolo

A primer of English versification / by James McAuley

Pubbl/distr/stampa

Sydney : Sydney university press, [1966]

Descrizione fisica

59 p. : tav. ; 22 cm.

Disciplina

426

Soggetti

Lingua inglese - Metrica

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

3.

Record Nr.

UNINA9910736025803321

Autore

Joharinad Parvaneh

Titolo

Mathematical Principles of Topological and Geometric Data Analysis / / by Parvaneh Joharinad, Jürgen Jost

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023

ISBN

3-031-33440-X

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (287 pages)

Collana

Mathematics of Data, , 2731-4111 ; ; 2

Altri autori (Persone)

JostJürgen

Disciplina

514

Soggetti

Mathematics

Machine learning

Computer science

Geometry

Topology

Applications of Mathematics

Machine Learning

Computational Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di contenuto

Introduction -- Topological foundations, hypercomplexes and homology -- Weighted complexes, cohomology and Laplace operators -- The Laplace operator and the geometry of graphs -- Metric spaces and manifolds -- Linear methods: Kernels, variations, and averaging -- Nonlinear schemes: Clustering, feature extraction and dimension reduction -- Manifold learning, the scheme of Laplacian eigenmaps -- Metrics and curvature.

Sommario/riassunto

This book explores and demonstrates how geometric tools can be used in data analysis. Beginning with a systematic exposition of the mathematical prerequisites, covering topics ranging from category theory to algebraic topology, Riemannian geometry, operator theory and network analysis, it goes on to describe and analyze some of the most important machine learning techniques for dimension reduction, including the different types of manifold learning and kernel methods. It also develops a new notion of curvature of generalized metric spaces, based on the notion of hyperconvexity, which can be used for the topological representation of geometric information. In recent years there has been a fascinating development: concepts and methods originally created in the context of research in pure mathematics, and in particular in geometry, have become powerful tools in machine learning for the analysis of data. The underlying reason for this is that data are typically equipped with some kind of notion of distance, quantifying the differences between data points. Of course, to be successfully applied, the geometric tools usually need to be redefined, generalized, or extended appropriately. Primarily aimed at mathematicians seeking an overview of the geometric concepts and methods that are useful for data analysis, the book will also be of interest to researchers in machine learning and data analysis who want to see a systematic mathematical foundation of the methods that they use.