1.

Record Nr.

UNINA9910819310903321

Autore

Atienza Rowel

Titolo

Advanced deep learning with Keras : apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more / / Rowel Atienza

Pubbl/distr/stampa

London, England : , : Packt Publishing, Limited, , [2018]

©2018

Edizione

[1st edition]

Descrizione fisica

1 online resource (368 pages)

Disciplina

006.32

Soggetti

Machine learning

Neural networks (Computer science)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Cover -- Copyright -- Packt upsell -- Contributors -- Table of Contents -- Preface -- Chapter 1: Introducing Advanced Deep  Learning with Keras -- Why is Keras the perfect deep learning library? -- Installing Keras and TensorFlow -- Implementing the core deep learning models - MLPs, CNNs and RNNs -- The difference between MLPs, CNNs, and RNNs -- Multilayer perceptrons (MLPs) -- MNIST dataset -- MNIST digits classifier model -- Building a model using MLPs and Keras -- Regularization -- Output activation and loss function -- Optimization -- Performance evaluation -- Model summary -- Convolutional neural networks (CNNs) -- Convolution -- Pooling operations -- Performance evaluation and model summary -- Recurrent neural networks (RNNs) -- Conclusion -- Chapter 2: Deep Neural Networks -- Functional API -- Creating a two-input and one-output model -- Deep residual networks (ResNet) -- ResNet v2 -- Densely connected convolutional networks (DenseNet) -- Building a 100-layer DenseNet-BC for CIFAR10 -- Conclusion -- References -- Chapter 3: Autoencoders -- Principles of autoencoders -- Building autoencoders using Keras -- Denoising autoencoder (DAE) -- Automatic colorization autoencoder -- Conclusion -- References -- Chapter 4: Generative Adversarial  Networks (GANs) -- An overview of GANs -- Principles of GANs -- GAN implementation in Keras --



Conditional GAN -- Conclusion -- References -- Chapter 5: Improved GANs -- Wasserstein GAN -- Distance functions -- Distance function in GANs -- Use of Wasserstein loss -- WGAN implementation using Keras -- Least-squares GAN (LSGAN) -- Auxiliary classifier GAN (ACGAN) -- Conclusion -- References -- Chapter 6: Disentangled  Representation GANs -- Disentangled representations -- InfoGAN -- Implementation of InfoGAN in Keras -- Generator outputs of InfoGAN -- StackedGAN -- Implementation of StackedGAN in Keras.

Generator outputs of StackedGAN -- Conclusion -- Reference -- Chapter 7: Cross-Domain GANs -- Principles of CycleGAN -- The CycleGAN Model -- Implementing CycleGAN using Keras -- Generator outputs of CycleGAN -- CycleGAN on MNIST and SVHN datasets -- Conclusion -- References -- Chapter 8: Variational Autoencoders (VAEs) -- Principles of VAEs -- Variational inference -- Core equation -- Optimization -- Reparameterization trick -- Decoder testing -- VAEs in Keras -- Using CNNs for VAEs -- Conditional VAE (CVAE) -- -VAE: VAE with disentangled latent representations -- Conclusion -- References -- Chapter 9: Deep Reinforcement Learning -- Principles of reinforcement learning (RL) -- The Q value -- Q-Learning example -- Q-Learning in Python -- Nondeterministic environment -- Temporal-difference learning -- Q-Learning on OpenAI gym -- Deep Q-Network (DQN) -- DQN on Keras -- Double Q-Learning (DDQN) -- Conclusion -- References -- Chapter 10: Policy Gradient Methods -- Policy gradient theorem -- Monte Carlo policy gradient (REINFORCE) method -- REINFORCE with baseline method -- Actor-Critic method -- Advantage Actor-Critic (A2C) method -- Policy Gradient methods with Keras -- Performance evaluation of policy gradient methods -- Conclusion -- References -- Other Books You May Enjoy -- Index.

Sommario/riassunto

A comprehensive guide to advanced deep learning techniques, including Autoencoders, GANs, VAEs, and Deep Reinforcement Learning, that drive today's most impressive AI results Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement Deep Neural Networks, Autoencoders, GANs, VAEs, and Deep Reinforcement Learning A wide study of GANs, including Improved GANs, Cross-Domain GANs and Disentangled Representation GANs Book Description Recent developments in deep learning, including GANs, Variational Autoencoders, and Deep Reinforcement Learning, are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You'll learn how to implement deep learning models with Keras and Tensorflow, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create Autoencoders. You then learn all about Generative Adversarial Networks (GANs), and how they can open new levels of AI performance. Variational AutoEncoders (VAEs) are implemented, and you'll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement Deep



Reinforcement Learning (DRL) such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI. What you will learn Cutting-edge techniques in human-like AI performance Implement advanced deep learning models using Keras The building blocks for advanced techniques - MLPs, CNNs, and RNNs Deep neural networks ? ResNet and DenseNet Autoencoders and Variational AutoEncoders (VAEs) Generative Adversarial Networks (GANs) and creative AI techniques Disentangled Representation GANs, and Cross-Domain GANs Deep Reinforcement Learning (DRL) meth...

2.

Record Nr.

UNINA9910265128903321

Autore

Schulz-Nieswandt Frank <p>Frank Schulz-Nieswandt, Universität zu Köln, Deutschland </p>

Titolo

Menschenwürde als heilige Ordnung : Eine Re-Konstruktion sozialer Exklusion im Lichte der Sakralität der personalen Würde / Frank Schulz-Nieswandt

Pubbl/distr/stampa

Bielefeld, : transcript Verlag, 2017

ISBN

9783839439418

3839439418

Edizione

[1st ed.]

Descrizione fisica

1 online resource (244 pages)

Collana

Kulturen der Gesellschaft

Classificazione

MD 4700

Disciplina

261.83315

Soggetti

Sozialpolitik

Social Policy

Inklusion

Inclusion

Personalität

Personhood

Grundrechte

Fundamental Social Rights

Säkularität

Secularity

Humanismus

Humanism

Menschenwürde

Human Dignity

Zivilisation

Civilisation

Ernst-Wolfgang Böckenförde

Jürgen Habermas



Hans Joas

Giorgio Agamben

Paul Tillich

Romano Guardini

Politik

Politics

Mensch

Human

Ethik

Ethics

Social Inequality

Soziale Ungleichheit

Human Rights

Menschenrechte

Soziologie

Sociology

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

From a humanistic point of view and transcending theology and the Church, the dignity of humans as individuals is a sacred basis of the secular social constitutional state.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Frontmatter    1 Inhalt    5 Vorwort    7 I. Einleitung    11 II. Weitere Zugänge    31 III. Soziologie der Exklusion    49 IV. Anthropologie und Rechtsphilosophie der Personalität    57 V. Humanismus gottloser Onto-Theologie    111 VI. Angst und Methode in der Wissenschaft    157 VII. Verwendungskontext in der Hochschullehre    161 VIII. Zusammenfassung und Ausblick in sozialpolitischer Perspektive    163 Schlussbemerkungen    175 Anhang 1: Strukturgleichheit von rawlsianischen Pareto-Lösungen und kantischem Sittengesetz    179 Anhang 2: Sozialontologie als nachmetaphysische Metaphysik des Sozialen    183 Anhang 3: Das Problem der Hermeneutik    187 Literatur    189

Sommario/riassunto

Die Würde des Menschen ist unantastbar – dieses unbedingte Recht ist völker-, europa- und verfassungsrechtlich verbürgt.Dass die Würde des Menschen jedoch auch im säkularisierten sozialen Rechtsstaat letztendlich eine heilige Ordnung ist, kollektiv religiös geglaubt werden muss und sich nicht in einem rationalen Diskurs hinreichend wahrheitsfähig erweist, zeigt Frank Schulz-Nieswandt im Rekurs auf Böckenförde, Habermas, Joas und Agamben.Im Anschluss daran entfaltet er die Idee einer gottlosen Ontotheologie eines existenzialen personalistischen Humanismus, den er mit Verweis auf Paul Tillich und Romano Guardini zugleich gegen jeden Übergriff einer autoritären Theo-Dogmatik supranaturalistischer Art verteidigt.

»Das Buch [ist] allen, die zu sozialethischen Fragen arbeiten und forschen, zu empfehlen.«