1.

Record Nr.

UNINA990003445860403321

Autore

Coppola, Gauro

Titolo

La "conta delle anime". : Popolazioni e registri parrocchiali: questioni di metodo ed esperienze / a cura di Gauro Coppola e Casimira Grandi

Pubbl/distr/stampa

Bologna : Il Mulino, 1989

ISBN

88-15-02379-8

Descrizione fisica

336 p. ; 21,5 cm

Locazione

DECSE

DECTS

Collocazione

SE 100.04.08-

N4.373

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISA990000539880203316

Autore

DELUMEAU, Jean

Titolo

Il cristianesimo sta per morire? / prefazione di Vittorio Messori

Pubbl/distr/stampa

Torino, : Società editrice internazionale, 1978

Descrizione fisica

197 p. ; 19 cm

Collana

Saggi SEI

Disciplina

230.

Soggetti

Cristianesimo - Saggi

Collocazione

II.2. 277 (VARIE COLL. 554/10)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Trad. di O. Guerrieri

3.

Record Nr.

UNINA9910260608503321

Autore

Sussman Gerald Jay

Titolo

Functional differential geometry / / Gerald Jay Sussman and Jack Wisdom with Will Farr

Pubbl/distr/stampa

Cambridge, MA, : MIT Press, c2013

ISBN

9780262315616

0262315610

Edizione

[1st ed.]

Descrizione fisica

1 online resource (249 p.)

Altri autori (Persone)

WisdomJack

FarrWill

Disciplina

516.3/6

Soggetti

Geometry, Differential

Functional differential equations

Mathematical physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.



Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Contents; Preface; Prologue; 1 Introduction; 2 Manifolds; 3 Vector Fields and One-Form Fields; 4 Basis Fields; 5 Integration; 6 Over a Map; 7 Directional Derivatives; 8 Curvature; 9 Metrics; 10 Hodge Star and Electrodynamics; 11 Special Relativity; A Scheme; B Our Notation; C Tensors; References; Index

Sommario/riassunto

Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misřables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level.The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.