1.

Record Nr.

UNINA9910465788103321

Autore

Nancy Jean-Luc

Titolo

After Fukushima : the equivalence of catastrophes / / Jean-Luc Nancy ; translated by Charlotte Mandell

Pubbl/distr/stampa

New York, New York : , : Fordham University Press, , 2015

©2015

ISBN

0-8232-6340-1

0-8232-6339-8

0-8232-6633-8

0-8232-6341-X

0-8232-6342-8

Edizione

[First edition.]

Descrizione fisica

1 online resource (72 p.)

Disciplina

363.3401

Soggetti

Disasters - Philosophy

Technology - Philosophy

Fukushima Nuclear Disaster, Japan, 2011

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Translation of: Équivalence des catastrophes  (apres Fukushima)

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Front matter -- Contents -- After Fukushima: The Equivalence of Catastrophes -- Preamble -- 1 -- 2 -- 3 -- 4 -- 5 -- 6 -- 7 -- 8 -- 9 -- 10 -- Questions for Jean-Luc Nancy -- It’s a Catastrophe! -- Notes

Sommario/riassunto

In this book, the philosopher Jean-Luc Nancy examines the nature of catastrophes in the era of globalization and technology. Can a catastrophe be an isolated occurrence? Is there such a thing as a “natural” catastrophe when all of our technologies—nuclear energy, power supply, water supply—are necessarily implicated, drawing together the biological, social, economic, and political? Nancy examines these questions and more. Exclusive to this English edition are two interviews with Nancy conducted by Danielle Cohen-Levinas and Yuji Nishiyama and Yotetsu Tonaki.



2.

Record Nr.

UNINA9910257452503321

Titolo

Applied Inverse Problems [[electronic resource] ] : Lectures presented at the RCP 264 "Etude Interdisciplinaire des Problemes Inverses", sponsored by the Centre National de la Recherche Scientifique / / edited by P. C. Sabatier

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1978

ISBN

3-540-35594-4

Edizione

[1st ed. 1978.]

Descrizione fisica

1 online resource (V, 425 p.)

Collana

Lecture Notes in Physics, , 0075-8450 ; ; 85

Disciplina

530.12

Soggetti

Quantum physics

Geophysics

Quantum computers

Spintronics

Quantum Physics

Geophysics/Geodesy

Quantum Information Technology, Spintronics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

to applied inverse problems -- Ray theoretical inverse methods in geophysics -- Inverse methods applied to continuation problems in geophysics -- Linear inverse theory with a priori data -- Application of linear programming to the inverse gravity or magnetic problem basic numerical techniques -- Analytic extrapolations and inverse problems -- Stieltjes functions and approximate solutions of an inverse problem -- Quelques methodes sur la recherche d'un domaine optimal -- Diverses donnees spectrales pour le probleme in verse discret de sturm-liouville -- On the regularization of linear inverse problems in Fourier optics -- Determination of the index profile of a dielectric plate from scattering data -- Inversion-like integral equations -- Inverse method for off-shell continuation of the scattering amplitude in quantum mechanics -- Utilisation des groupes de transformation pour la resolution des equations aux derivees partielles -- Spectral



transform and nonlinear evolution equations -- What you always wanted to know about the application of inverse problems to nonlinear equations (or what you would like to do with the I.S.T. -- On the inverse problem of local seismic foci -- An inverse problem for electromagnetic prospection -- Survey of the phenomenological approach to the inverse problem in elementary particles scattering -- A study of an inverse problem for finite range potentials -- Algorithmes pour un probleme inverse discret de sturm-liouville -- Construction of Regge amplitudes through solution of S-matrix equations -- Gel'fand-Levitan theory of the inverse problem for singular potentials.