|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910257399203321 |
|
|
Autore |
Kopietz Peter <1961-> |
|
|
Titolo |
Bosonization of Interacting Fermions in Arbitrary Dimensions / / by Peter Kopietz |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1997 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1997.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 259 p. 3 illus.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Physics Monographs ; ; 48 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematical physics |
Condensed matter |
Mathematical Methods in Physics |
Condensed Matter Physics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Development of the formalism -- Fermions and the Fermi surface -- Hubbard-Stratonovich transformations -- Bosonization of the Hamiltonian and the density-density correlation function -- The single-particle Green’s function -- Applications to physical systems -- Singular interactions (f q ? /q/?? ) -- Quasi-one-dimensional metals -- Electron-phonon interactions -- Fermions in a stochastic medium -- Transverse gauge fields. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The author presents in detail a new non-perturbative approach to the fermionic many-body problem, improving the bosonization technique and generalizing it to dimensions d>1 via functional integration and Hubbard--Stratonovich transformations. In Part I he clearly illustrates the approximations and limitations inherent in higher-dimensional bosonization and derives the precise relation with diagrammatic perturbation theory. He shows how the non-linear terms in the energy dispersion can be systematically included into bosonization in arbitrary d, so that in d>1 the curvature of the Fermi surface can be taken into account. Part II gives applications to problems of physical interest, such as coupled metallic chains, electron-phonon interactions, disordered electrons, and electrons coupled to transverse gauge fields. The book addresses researchers and graduate students in theoretical condensed |
|
|
|
|