1.

Record Nr.

UNINA9910254629003321

Autore

Nomura Yusuke

Titolo

Ab Initio Studies on Superconductivity in Alkali-Doped Fullerides / / by Yusuke Nomura

Pubbl/distr/stampa

Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016

ISBN

981-10-1442-6

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (XX, 143 p. 27 illus., 18 illus. in color.)

Collana

Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053

Disciplina

537.623

Soggetti

Superconductivity

Superconductors

Physics

Solid state physics

Strongly Correlated Systems, Superconductivity

Numerical and Computational Physics, Simulation

Solid State Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction to superconductivity in alkali-doped fullerides -- Methods: Ab initio downfolding and model-calculation techniques -- Application of cDFPT to alkali-doped fullerides -- Analysis of low-energy Hamiltonians with extended DMFT -- Concluding remarks.

Sommario/riassunto

This book covers high-transition temperature (Tc) s-wave superconductivity and the neighboring Mott insulating phase in alkali-doped fullerides. The author presents (1) a unified theoretical description of the phase diagram and (2) a nonempirical calculation of Tc. For these purposes, the author employs an extension of the DFT+DMFT (density-functional theory + dynamical mean-field theory). He constructs a realistic electron–phonon-coupled Hamiltonian with a newly formulated downfolding method. The Hamiltonian is analyzed by means of the extended DMFT. A notable aspect of the approach is that it requires only the crystal structure as a priori knowledge. Remarkably, the nonempirical calculation achieves for the first time a quantitative reproduction of the experimental phase diagram including the



superconductivity and the Mott phase. The calculated Tc agrees well with the experimental data, with the difference within 10 K. The book provides details of the computational scheme, which can also be applied to other superconductors and other phonon-related topics. The author clearly describes a superconducting mechanism where the Coulomb and electron­–phonon interactions show an unusual cooperation in the superconductivity thanks to the Jahn–Teller nature of the phonons.