|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910254615903321 |
|
|
Autore |
Denkova Denitza |
|
|
Titolo |
Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light / / by Denitza Denkova |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2016.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (108 p.) |
|
|
|
|
|
|
Collana |
|
Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Lasers |
Photonics |
Optical materials |
Electronic materials |
Nanoscale science |
Nanoscience |
Nanostructures |
Nanotechnology |
Optics, Lasers, Photonics, Optical Devices |
Optical and Electronic Materials |
Nanoscale Science and Technology |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters. |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Imaging the Magnetic Near-field of Plasmon Modes in Bar Antennas -- A Near-Field-Aperture Probe as an Optical Magnetic Source and Detector -- Magnetic Near-Field Imaging of Increasingly Complex Plasmonic Antennas -- Plasmon-Enhanced Sub-wavelength Laser Ablation: Plasmonic Nano-Jets -- Conclusions and Outlook. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This thesis focuses on a means of obtaining, for the first time, full electromagnetic imaging of photonic nanostructures. The author also develops a unique practical simulation framework which is used to confirm the results. The development of innovative photonic devices and metamaterials with tailor-made functionalities depends critically on our capability to characterize them and understand the underlying |
|
|
|
|
|
|
|
|
|
|
light-matter interactions. Thus, imaging all components of the electromagnetic light field at nanoscale resolution is of paramount importance in this area. This challenge is answered by demonstrating experimentally that a hollow-pyramid aperture probe SNOM can directly image the horizontal magnetic field of light in simple plasmonic antennas – rod, disk and ring. These results are confirmed by numerical simulations, showing that the probe can be approximated, to first order, by a magnetic point-dipole source. This approximation substantially reduces the simulation time and complexity and facilitates the otherwise controversial interpretation of near-field images. The validated technique is used to study complex plasmonic antennas and to explore new opportunities for their engineering and characterization. |
|
|
|
|
|
| |