| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910367743203321 |
|
|
Autore |
Burt Graeme |
|
|
Titolo |
Methods and Concepts for Designing and Validating Smart Grid Systems |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (408 p.) |
|
|
|
|
|
|
Soggetti |
|
History of engineering and technology |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
Energy efficiency and low-carbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible loads provide new system controls, but power system operators and utilities have to deal with their fluctuating nature, limited storage capabilities, and typically higher infrastructure complexity with a growing number of heterogeneous components. In addition to the technological change of new components, the liberalization of energy markets and new regulatory rules bring contextual change that necessitates the restructuring of the design and operation of future energy systems. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts, new and advanced markets, as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems that form smart grids. Due to the considerably higher complexity of such cyber-physical energy systems, constituting the power system, automation, protection, information and communication technology (ICT), and system services, it is expected that the design and validation of smart-grid configurations will play a major role in future technology and system developments. However, an integrated approach for the design and evaluation of smart-grid configurations incorporating these diverse |
|
|
|
|
|
|
|
|
|
|
|
|
|
constituent parts remains evasive. The currently available validation approaches focus mainly on component-oriented methods. In order to guarantee a sustainable, affordable, and secure supply of electricity through the transition to a future smart grid with considerably higher complexity and innovation, new design, validation, and testing methods appropriate for cyber-physical systems are required. Therefore, this book summarizes recent research results and developments related to the design and validation of smart grid systems. |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910254588503321 |
|
|
Autore |
Putz Stefan |
|
|
Titolo |
Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles / / by Stefan Putz |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2017.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XVIII, 124 p. 75 illus., 65 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Quantum computers |
Spintronics |
Superconductivity |
Superconductors |
Quantum theory |
Solid state physics |
Quantum Information Technology, Spintronics |
Strongly Correlated Systems, Superconductivity |
Quantum Physics |
Solid State Physics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters. |
|
|
|
|
|
|
Nota di contenuto |
|
Part 1: Physical Principles -- Confined Electromagnetic Waves -- Spins |
|
|
|
|
|
|
|
|
|
|
|
in the Cavity–Cavity QED -- Part II: Experimental Realization -- Experimental Implementation–Solid-State Hybrid Quantum System -- Part III: Main Results -- Collective Spin States Coupled to a Single Mode Cavity–Strong Coupling -- Spin Ensembles and Decoherence in the Strong-Coupling Regime–Cavity Protection -- Engineering of long-lived Collective Dark States–Spectral Hole Burning -- Amplitude Bistability with inhomogeneous Spin Broadening–Driven Tavis-Cummings -- Spin Echo Spectroscopy–Spin Refocusing -- Conclusion and Outlook. |
|
|
|
|
|
|
Sommario/riassunto |
|
This thesis combines quantum electrical engineering with electron spin resonance, with an emphasis on unraveling emerging collective spin phenomena. The presented experiments, with first demonstrations of the cavity protection effect, spectral hole burning and bistability in microwave photonics, cover new ground in the field of hybrid quantum systems. The thesis starts at a basic level, explaining the nature of collective effects in great detail. It develops the concept of Dicke states spin-by-spin, and introduces it to circuit quantum electrodynamics (QED), applying it to a strongly coupled hybrid quantum system studied in a broad regime of several different scenarios. It also provides experimental demonstrations including strong coupling, Rabi oscillations, nonlinear dynamics, the cavity protection effect, spectral hole burning, amplitude bistability and spin echo spectroscopy. |
|
|
|
|
|
|
|
| |