1.

Record Nr.

UNICAMPANIASUN0028466

Autore

Natoli, Salvatore

Titolo

Soggetto e fondamento : il sapere dell'origine e la scientificità della filosofia / Salvatore Natoli

Pubbl/distr/stampa

Milano : Mondadori, c1996

ISBN

88-424-9417-8

Descrizione fisica

XVIII, 308 p. ; 21 cm.

Soggetti

Descartes, René

Aristotele - Concetto di soggetto

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910710576303321

Autore

Bransford J. W (James W.)

Titolo

Laser-initiated combustion studies on metallic alloys in pressurized oxygen / / J. W. Bransford

Pubbl/distr/stampa

Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1984

Descrizione fisica

1 online resource

Collana

NBSIR ; ; 84-3013

Altri autori (Persone)

BransfordJ. W (James W.)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

1984.

Contributed record: Metadata reviewed, not verified. Some fields updated by batch processes.

Title from PDF title page.

Nota di bibliografia

Includes bibliographical references.



3.

Record Nr.

UNINA9910254578103321

Autore

Dittrich Walter

Titolo

Classical and Quantum Dynamics : From Classical Paths to Path Integrals / / by Walter Dittrich, Martin Reuter

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017

ISBN

3-319-58298-4

Edizione

[5th ed. 2017.]

Descrizione fisica

1 online resource (XVI, 489 p. 18 illus.)

Disciplina

530.12

Soggetti

Quantum theory

Field theory (Physics)

Mathematical physics

Nuclear physics

Quantum Physics

Classical and Continuum Physics

Mathematical Applications in the Physical Sciences

Particle and Nuclear Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references & index.

Nota di contenuto

Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory  -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for



the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Appendix -- Solutions -- Index.

Sommario/riassunto

Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.