1.

Record Nr.

UNISOBE600200021753

Autore

Orefice, Paolo

Titolo

Lo studio interdisciplinare dell'educazione : problemi metodologici / Paolo Orefice

Pubbl/distr/stampa

Teramo, : Giunti & Lisciani, 1983

Descrizione fisica

128 p. ; 21 cm

Collana

Educazione nuova

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910254570903321

Autore

Cook Joshua

Titolo

Docker for Data Science : Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server / / by Joshua Cook

Pubbl/distr/stampa

Berkeley, CA : , : Apress : , : Imprint : Apress, , 2017

ISBN

9781484230121

1484230124

Edizione

[1st ed. 2017.]

Descrizione fisica

1 online resource (XXI, 257 p. 97 illus., 76 illus. in color.)

Disciplina

005.1

Soggetti

Big data

Artificial intelligence

Open source software

Computer programming

Python (Computer program language)

Big Data

Artificial Intelligence

Open Source

Python

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Note generali

Includes index.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Chapter 1:  Introduction -- Chapter 2:  Docker -- Chapter 3: Interactive Programming -- Chapter 4: Docker Engine -- Chapter 5: The Dockerfile -- Chapter 6: Docker Hub -- Chapter 7: The Opinionated Jupyter Stacks -- Chapter 8: The Data Stores -- Chapter 9: Docker Compose -- Chapter 10: Interactive Development.

Sommario/riassunto

Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller. It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable.  As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms.   What  You'll Learn: Master interactive development using the Jupyter platform Run and build Docker containers from scratch and from publicly available open-source images Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type Deploy a multi-service data science application across a cloud-based system.