1.

Record Nr.

UNINA9910254293203321

Autore

Seberry Jennifer

Titolo

Orthogonal Designs : Hadamard Matrices, Quadratic Forms and Algebras / / by Jennifer Seberry

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017

ISBN

3-319-59032-4

Edizione

[1st ed. 2017.]

Descrizione fisica

1 online resource (XXIII, 453 p. 10 illus.)

Disciplina

511.6

Soggetti

Combinatorics

Matrix theory

Algebra

Signal processing

Image processing

Speech processing systems

Computer mathematics

Linear and Multilinear Algebras, Matrix Theory

Signal, Image and Speech Processing

Computational Mathematics and Numerical Analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1 Orthogonal Designs -- 2 Non-existence Results -- 3 Algebraic Theory of Orthogonal Designs.- 4 Orthogonal Designs Constructed via Plug-in Matrices -- 5 Amicable Orthogonal Designs.- 6 Product Designs and Repeat Designs (Gastineau-Hills) -- 7 Techniques -- 8 Robinson’s Theorem.- 9 Hadamard Matrices and Asymptotic Orthogonal Designs -- 10 Complex, Quaternion and Non Square Orthogonal Designs -- Appendix: A Orthogonal Designs in Order 12,24,48 and 3.q -- B Orthogonal Designs in Order 20, 40 and 80 -- C Orthogonal Designs in Order 28 and 56 -- D Orthogonal Designs in Order 36, 72 -- E Orthogonal Designs in order 44 -- F Orthogonal Designs in Powers of 2 -- G Some Complementary Sequences -- H Product Designs -- References.



Sommario/riassunto

Orthogonal designs have proved fundamental to constructing code division multiple antenna systems for more efficient mobile communications. Starting with basic theory, this book develops the algebra and combinatorics to create new communications modes. Intended primarily for researchers, it is also useful for graduate students wanting to understand some of the current communications coding theories.