| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990009918330403321 |
|
|
Autore |
Apian, Petrus <1495-1551> |
|
|
Titolo |
Mapa Universal de 1520 [Documento cartografico] / por Pedro Apiano ; reproduccion publicada por Carlos Sanz |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Madrid : Graficas Yagues, 1961 |
|
|
|
|
|
|
|
Descrizione fisica |
|
1 carta ; 39 x 27 cm su foglio 70 x 45, 5 cm |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
Cons.3 Atl.1 Carte sciolte 41(45) |
Cons.3 Atl.1 Carte sciolte 41(45)bis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale cartografico a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Ripr. dell'ed. Vienna, 1520 |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910254283303321 |
|
|
Autore |
Melnikov Yu. A. |
|
|
Titolo |
Green's functions : potential fields on surfaces / / by Yuri A. Melnikov, Volodymyr N. Borodin |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2017.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XVI, 198 p. 32 illus., 21 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Developments in Mathematics, , 1389-2177 ; ; 48 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differential equations, Partial |
Differential equations |
Mechanics |
Numerical analysis |
Partial Differential Equations |
Ordinary Differential Equations |
Classical Mechanics |
Numerical Analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface -- Introduction -- 1. Green's Functions for ODE -- 2. Spherical Surface -- 3.Toroidal Surface -- 4. Compound Structures -- 5. Irregular Configurations -- A. Catalogue of Green's Functions -- References. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students. |
|
|
|
|
|
|
|
| |