1.

Record Nr.

UNINA990009918330403321

Autore

Apian, Petrus <1495-1551>

Titolo

Mapa Universal de 1520 [Documento cartografico] / por Pedro Apiano ; reproduccion publicada por Carlos Sanz

Pubbl/distr/stampa

Madrid : Graficas Yagues, 1961

Descrizione fisica

1 carta ; 39 x 27 cm su foglio 70 x 45, 5 cm

Locazione

ILFGE

Collocazione

Cons.3 Atl.1 Carte sciolte 41(45)

Cons.3 Atl.1 Carte sciolte 41(45)bis

Lingua di pubblicazione

Spagnolo

Formato

Materiale cartografico a stampa

Livello bibliografico

Monografia

Note generali

Ripr. dell'ed. Vienna, 1520

2.

Record Nr.

UNINA9910254283303321

Autore

Melnikov Yu. A.

Titolo

Green's functions : potential fields on surfaces / / by Yuri A. Melnikov, Volodymyr N. Borodin

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017

ISBN

3-319-57243-1

Edizione

[1st ed. 2017.]

Descrizione fisica

1 online resource (XVI, 198 p. 32 illus., 21 illus. in color.)

Collana

Developments in Mathematics, , 1389-2177 ; ; 48

Disciplina

515.35

Soggetti

Differential equations, Partial

Differential equations

Mechanics

Numerical analysis

Partial Differential Equations

Ordinary Differential Equations

Classical Mechanics

Numerical Analysis

Lingua di pubblicazione

Inglese



Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Preface -- Introduction -- 1. Green's Functions for ODE -- 2. Spherical Surface -- 3.Toroidal Surface -- 4. Compound Structures -- 5. Irregular Configurations -- A. Catalogue of Green's Functions -- References.

Sommario/riassunto

This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.