| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910254248403321 |
|
|
Autore |
Pop Paul |
|
|
Titolo |
Microfluidic Very Large Scale Integration (VLSI) : Modeling, Simulation, Testing, Compilation and Physical Synthesis / / by Paul Pop, Wajid Hassan Minhass, Jan Madsen |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2016.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (277 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Electronic circuits |
Biomedical engineering |
Circuits and Systems |
Biomedical Engineering and Bioengineering |
Electronic Circuits and Devices |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters and index. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Part 1. Preliminaries -- Design Methodology for Flow-based Microfluidic Biochips -- Biochip Architecture Model -- Biochemical Application Modeling -- Part 2. Compilation -- Compiling High-Level Languages -- Application Mapping and Simulation -- Control Synthesis and Pin-Count Minimization -- Part 3. Physical Design -- Allocation and Schematic Design -- Placement and Routing -- On-Chip Control Synthesis -- Testing and Fault-Tolerant Design. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents the state-of-the-art techniques for the modeling, simulation, testing, compilation and physical synthesis of mVLSI biochips. The authors describe a top-down modeling and synthesis methodology for the mVLSI biochips, inspired by microelectronics VLSI methodologies. They introduce a modeling framework for the components and the biochip architecture, and a high-level microfluidic protocol language. Coverage includes a topology graph-based model for the biochip architecture, and a sequencing graph to model for biochemical application, showing how the application model can be obtained from the protocol language. The techniques described |
|
|
|
|
|
|
|
|
|
|
facilitate programmability and automation, enabling developers in the emerging, large biochip market. · Presents the current models used for the research on compilation and synthesis techniques of mVLSI biochips in a tutorial fashion; · Includes a set of "benchmarks", that are presented in great detail and includes the source code of several of the techniques presented, including solutions to the basic compilation and synthesis problems; · Discusses several new research problems in detail, using numerous examples. |
|
|
|
|
|
| |