1.

Record Nr.

UNISA990001970210203316

Autore

TEKAVCIC, Pavao

Titolo

1: Fonematica / Pavao Tekavčić

Pubbl/distr/stampa

Bologna : Il Mulino, 1980

Edizione

[Nuova ed]

Descrizione fisica

244 p. ; 22 cm

Collana

La nuova scienza , Serie di linguistica e critica letteraria

Disciplina

455

Soggetti

Lingua italiana - Grammatica - Storia

Collocazione

IV.2. Coll. 24/ 13/1(V B Coll. 52/4 1)

IV.2. Coll. 24/ 13/1a(COLL BF 11 I)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910254094303321

Autore

Hacking Paul

Titolo

Compactifying Moduli Spaces / / by Paul Hacking, Radu Laza, Dragos Oprea ; edited by Gilberto Bini, Martí Lahoz, Emanuele Macrí, Paolo Stellari

Pubbl/distr/stampa

Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2016

ISBN

3-0348-0921-2

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (141 p.)

Collana

Advanced Courses in Mathematics - CRM Barcelona, , 2297-0304

Disciplina

516.35

Soggetti

Geometry, Algebraic

Algebraic Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Foreword -- 1: Perspectives on moduli spaces -- The GIT Approach to constructing moduli spaces -- Moduli and periods -- The KSBA approach to moduli spaces -- Bibliography -- 2: Compact moduli of surfaces and vector bundles -- Moduli spaces of surfaces of general type -- Wahl singularities -- Examples of degenerations of Wahl type -- Exceptional vector bundles associated to Wahl degenerations -- Examples -- Bibliography -- 3: Notes on the moduli space of stable quotients -- Morphism spaces and Quot schemes over a fixed curve -- Stable quotients -- Stable quotient invariants -- Wall-crossing and other geometries -- Bibliography.

Sommario/riassunto

This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.