1.

Record Nr.

UNINA9910254076603321

Autore

Ellner Stephen P

Titolo

Data-driven Modelling of Structured Populations : A Practical Guide to the Integral Projection Model / / by Stephen P. Ellner, Dylan Z. Childs, Mark Rees

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016

ISBN

3-319-28893-8

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (339 p.)

Collana

Lecture Notes on Mathematical Modelling in the Life Sciences, , 2193-4789

Disciplina

333.95411072

Soggetti

Biomathematics

Bioinformatics

Bioinformàtica

Computational biology

Biomatemàtica

Biologia computacional

Mathematical and Computational Biology

Computer Appl. in Life Sciences

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Simple Deterministic IPM -- Basic Analysis 1: Demographic Measures and Events in the Life Cycle -- Basic Analysis 2: Prospective Perturbation Analysis -- Density Dependence -- General Deterministic IPM -- Environmental Stochasticity -- Spatial Models -- Evolutionary Demography -- Future Directions and Advanced Topics.

Sommario/riassunto

This book is a “How To” guide for modeling population dynamics using Integral Projection Models (IPM) starting from observational data. It is written by a leading research team in this area and includes code in the R language (in the text and online) to carry out all computations. The intended audience are ecologists, evolutionary biologists, and mathematical biologists interested in developing data-driven models for animal and plant populations. IPMs may seem hard as they involve integrals. The aim of this book is to demystify IPMs, so they become



the model of choice for populations structured by size or other continuously varying traits. The book uses real examples of increasing complexity to show how the life-cycle of the study organism naturally leads to the appropriate statistical analysis, which leads directly to the IPM itself. A wide range of model types and analyses are presented, including model construction, computational methods, and the underlying theory, with the more technical material in Boxes and Appendices. Self-contained R code which replicates all of the figures and calculations within the text is available to readers on GitHub. Stephen P. Ellner is Horace White Professor of Ecology and Evolutionary Biology at Cornell University, USA; Dylan Z. Childs is Lecturer and NERC Postdoctoral Fellow in the Department of Animal and Plant Sciences at The University of Sheffield, UK; Mark Rees is Professor in the Department of Animal and Plant Sciences at The University of Sheffield, UK.