1.

Record Nr.

UNINA9910254076103321

Autore

Kokilashvili Vakhtang

Titolo

Integral Operators in Non-Standard Function Spaces : Volume 2: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces / / by Vakhtang Kokilashvili, Alexander Meskhi, Humberto Rafeiro, Stefan Samko

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2016

ISBN

3-319-21018-1

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (XXIII, 1003 p.)

Collana

Operator Theory: Advances and Applications, , 2296-4878 ; ; 249

Disciplina

515.723

Soggetti

Operator theory

Functional analysis

Operator Theory

Functional Analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

IV: Grand Lebesgue Spaces -- 14 Maximal Functions and Potentials -- 15 Grand Lebesgue Spaces on Sets with Infinite Measure -- V: Grand Morrey Spaces -- 16 Maximal Functions, Fractional and Singular Integrals -- 17 Multiple Operators on the Cone of Decreasing Functions -- A: Grand Bochner Spaces -- Bibliography -- Symbol Index -- Subject Index.IV: Grand Lebesgue Spaces -- 14 Maximal Functions and Potentials -- 15 Grand Lebesgue Spaces on Sets with Infinite Measure -- V: Grand Morrey Spaces -- 16 Maximal Functions, Fractional and Singular Integrals -- 17 Multiple Operators on the Cone of Decreasing Functions -- A: Grand Bochner Spaces -- Bibliography -- Symbol Index -- Subject Index.

Sommario/riassunto

This book, the result of the authors’ long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand



Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book’s most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematicsand prospective students.