1.

Record Nr.

UNINA9910254069703321

Autore

Uzunca Murat

Titolo

Adaptive discontinuous Galerkin methods for non-linear reactive flows / / by Murat Uzunca

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2016

ISBN

3-319-30130-6

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (111 p.)

Collana

Lecture Notes in Geosystems Mathematics and Computing, , 2730-5996

Disciplina

510

Soggetti

Numerical analysis

Partial differential equations

Geophysics

Numerical Analysis

Partial Differential Equations

Geophysics/Geodesy

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

1 INTRODUCTION -- 1.1 Geological and computational background -- 1.2 Outline -- 2 DISCONTINUOUS GALERKIN METHODS -- 2.1 Preliminaries -- 2.2 Construction of IPG Methods -- 2.3 Computation Tools for Integral Terms -- 2.4 Effect of Penalty Parameter -- 2.5 Problems with Convection -- 3 ELLIPTIC PROBLEMS WITH ADAPTIVITY -- 3.1 Model Elliptic Problem -- 3.2 Adaptivity -- 3.3 Solution of Linearized Systems -- 3.4 Comparison with Galerkin Least Squares FEM (GLSFEM) -- 3.5 Numerical Examples -- 4 PARABOLIC PROBLEMS WITH TIME-SPACE ADAPTIVITY -- 4.1 Preliminaries and Model Equation -- 4.2 Semi-Discrete and Fully Discrete Formulations -- 4.3 Time-Space Adaptivity for Non-Stationary Problems -- 4.4 Solution of Fully Discrete System -- 4.5 Numerical Examples.-REFERENCES. .

Sommario/riassunto

The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After



introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.